PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The effect of sodium carboxymethyl cellulose on the entrainment of zoisite in flotation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
During flotation, fine gangue minerals can enter the concentrate through mechanical entrainment, which seriously affects the quality of concentrate. In this work, the effect of sodium carboxymethyl cellulose (CMC) on the flotation performance of zoisite, a silicate mineral, was studied. The role of CMC in reducing zoisite entrainment was investigated by dynamic foaming tests, surface tension measurements, rheology measurements, sedimentation tests, and optical microscopy experiments. The flotation results showed that zoisite mainly entered the concentrate by entrainment; the addition of low dosages of CMC decreased zoisite entrainment and efficiently separated cassiterite from zoisite; moreover, the concentrate grade and recovery of SnO2 increased by 1.27 % and 5.63 %, respectively, by using CMC in closed-circuit flotation tests. Dynamic foaming studies on the two-phase and three-phase foam/froth revealed that the presence of CMC decreased the froth ability and froth stability, and greatly altered the three-phase froth structure. Basically, the bubbles in the foam were larger after adding CMC. For the two-phase foam, the change of foam property had little to do with surface activity and bulk viscosity. For the three-phase froth, the froth property was strongly affected by the interaction of CMC and zoisite. The results of the sedimentation test and microscopy experiment demonstrated that CMC can cause zoisite to flocculate and enlarge the particle size, which was the main reason for the decrease of froth stability and entrainment. This study indicates that the side effects of depressants should not be overlooked when discussing the role of depressants in flotation.
Słowa kluczowe
Rocznik
Strony
34--47
Opis fizyczny
Bibliogr. 34 poz.
Twórcy
  • School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
  • Key Laboratory of Hunan Province for Clean and Efficient Utilization of Strategic Calcium-containing Mineral Resources, Central South University, Changsha 410083, China
autor
  • School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
  • Key Laboratory of Hunan Province for Clean and Efficient Utilization of Strategic Calcium-containing Mineral Resources, Central South University, Changsha 410083, China
autor
  • School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
  • Key Laboratory of Hunan Province for Clean and Efficient Utilization of Strategic Calcium-containing Mineral Resources, Central South University, Changsha 410083, China
autor
  • School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
  • Key Laboratory of Hunan Province for Clean and Efficient Utilization of Strategic Calcium-containing Mineral Resources, Central South University, Changsha 410083, China
Bibliografia
  • WANG, L., PENG, Y., RUNGE, K., BRADSHAW, D.J., 2015. A review of entrainment: Mechanisms, contributing factors and modelling in flotation. Minerals Engineering, 70, 77-91.
  • SMITH, P.G., WARREN, L.J., 1989. Entrainment of Particles into Flotation Froths. Mineral Processing and Extractive Metallurgy Review, 5, 123-145.
  • NEETHLING, S.J., CILLIERS, J.J., 2002. The entrainment of gangue into a flotation froth. International Journal of Mineral Processing, 64(2), 123-134.
  • AKTAS, Z., CILLIERS, J.J., BANFORD, A.W., 2008. Dynamic froth stability: Particle size, airflow rate and conditioning time effects. International Journal of Mineral Processing, 87(1-2), 65-71.
  • BARBIAN, N., HADLER, K., VENTURA-MEDINA, E., CILLIERS, J., 2005. The froth stability column: linking froth stability and flotation performance. Minerals Engineering, 18(3), 317-324.
  • BARBIAN, N., VENTURA-MEDINA, E., CILLIERS, J.J., 2003. Dynamic froth stability in froth flotation. Minerals Engineering, 16(11), 1111-1116.
  • CILEK, E.C., KARACA, S., 2015. Effect of nanoparticles on froth stability and bubble size distribution in flotation. International Journal of Mineral Processing, 138, 6-14.
  • LIU, S., GE, Y., FANG, J., YU, J., GAO, Q., 2020. An investigation of froth stability in reverse flotation of collophane. Minerals Engineering, 155.
  • SCHWARZ, S., GRANO, S., 2005. Effect of particle hydrophobicity on particle and water transport across a flotation froth (vol 256, pg 157, 2005). Colloids and Surfaces a-Physicochemical and Engineering Aspects, 263(1-3), V-V.
  • FENG, B., LU, Y., FENG, Q., ZHANG, M., GU, Y., 2012. Talc–serpentine interactions and implications for talc depression. Minerals Engineering, 32, 68-73.
  • LIU, Q., WANNAS, D., PENG, Y., 2006. Exploiting the dual functions of polymer depressants in fine particle flotation. International Journal of Mineral Processing, 80(2-4), 244-254.
  • FOLMER, B.M., KRONBERG, B., 2000. Effect of surfactant− polymer association on the stabilities of foams and thin films: sodium dodecyl sulfate and poly (vinyl pyrrolidone). Langmuir, 16(14), 5987-5992.
  • LI, C., RUNGE, K., SHI, F., FARROKHPAY, S., 2016. Effect of flotation froth properties on froth rheology. Powder Technology, 294, 55-65.
  • NEETHLING, S.J., CILLIERS, J.J., 2003. Modelling flotation froths. International Journal of Mineral Processing, 72(1- 4), 267-287.
  • SUN, L., YUEHUA, H., SUN, W., 2016. Effect and mechanism of octanol in cassiterite flotation using benzohydroxamic acid as collector. Transactions of Nonferrous Metals Society of China, 26(12), 3253-3257.
  • FARROKHPAY, S., 2011. The significance of froth stability in mineral flotation - A review. Advances in Colloid and Interface Science, 166(1-2), 1-7.
  • BIKERMAN, J.J., Foams. 2013, Springer Science & Business Media.
  • LUNKENHEIMER, K., MALYSA, K., 2003. Simple and generally applicable method of determination and evaluation of foam properties. Journal of Surfactants and Detergents, 6(1), 69-74.
  • TIAN, M., LIU, R., GAO, Z., CHEN, P., HAN, H., WANG, L., ZHANG, C., SUN, W., HU, Y., 2018a. Activation mechanism of Fe (III) ions in cassiterite flotation with benzohydroxamic acid collector. Minerals Engineering, 119, 31-37.
  • TIAN, M., GAO, Z., HAN, H., SUN, W., HU, Y., 2017. Improved flotation separation of cassiterite from calcite using a mixture of lead (II) ion/benzohydroxamic acid as collector and carboxymethyl cellulose as depressant. Minerals Engineering, 113, 68-70.
  • WARREN, L.J., 1985. Determination of the contributions of true flotation and entrainment in batch flotation tests. International Journal of Mineral Processing, 14(1), 33-44.
  • TIAN, M., GAO, Z., JI, B., FAN, R., LIU, R., CHEN, P., SUN, W., HU, Y., 2018b. Selective flotation of cassiterite from calcite with salicylhydroxamic acid collector and carboxymethyl cellulose depressant. Minerals, 8(8), 316.
  • HUNTER, T.N., PUGH, R.J., FRANKS, G.V., JAMESON, G.J., 2008. The role of particles in stabilising foams and emulsions. Advances in Colloid and Interface Science, 137(2), 57-81.
  • WANG, Y., LAUTEN, R.A., PENG, Y., 2016. The effect of biopolymer dispersants on copper flotation in the presence of kaolinite. Minerals Engineering, 96(9), 123-129.
  • WANG, B., PENG, Y., 2013. The behaviour of mineral matter in fine coal flotation using saline water. Fuel, 109, 309-315.
  • SCHREITHOFER, N., WIESE, J., MCFADZEAN, B., HARRIS, P., HEISKANEN, K., O'CONNOR, C., 2011. Frotherdepressant interactions in two and three phase systems. International Journal of Mineral Processing, 100(1-2), 33-40.
  • FARROKHPAY, S., 2012. The importance of rheology in mineral flotation: a review. Minerals Engineering, 36, 272-278.
  • ZHANG, M., XU, N., PENG, Y., 2015. The entrainment of kaolinite particles in copper and gold flotation using fresh water and sea water. Powder Technology, 286, 431-437.
  • SHABALALA, N.Z.P., HARRIS, M.C., FILHO, L.S.L., DEGLON, D.A., 2011. Effect of slurry rheology on gas dispersion in a pilot-scale mechanical flotation cell. Minerals Engineering, 24(13), 1448-1453.
  • SUBRAHMANYAM, T.V., FORSSBERG, E., 1988. Froth stability, particle entrainment and drainage in flotation — A review. International Journal of Mineral Processing, 23(1), 33-53.
  • SHI, F., ZHENG, X.F., 2003. The rheology of flotation froths. International Journal of Mineral Processing, 69(1), 115-128.
  • NDLOVU, B., BECKER, M., FORBES, E., DEGLON, D., FRANZIDIS, J.-P., 2011. The influence of phyllosilicate mineralogy on the rheology of mineral slurries. Minerals engineering, 24(12), 1314-1322.
  • BLASCHKE, Z., 1976. Beneficiation of coal fines by selective flocculation, in Proc. 7th Int. Coal Preparation Congress.
  • BAKINOV, K., VANEEV, I., GORLOVSKY, S., EROPKIN, U., ZASHIKHIN, N., KONEV, A., 1964. New methods of sulfide concentrate upgrading, in 7th International Mineral Processing Congress, pp. 227-238.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ac1def82-bf3f-458f-9c34-fc74ebef0e8a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.