PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The IoT gateway with active queue management

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
As the traffic volume from various Internet of things (IoT) networks increases significantly, the need for adapting the quality of service (QoS) mechanisms to the new Internet conditions becomes essential. We propose a QoS mechanism for the IoT gateway based on packet classification and active queue management (AQM). End devices label packets with a special packet field (type of service (ToS) for IPv4 or traffic class (TC) for IPv6) and thus classify them as priority for real-time IoT traffic and non-priority for standard IP traffic. Our AQM mechanism drops only non-priority packets and thus ensures that real-time traffic packets for critical IoT systems are not removed if the priority traffic does not exceed the maximum queue capacity. This AQM mechanism is based on the PIα controller with non-integer integration order. We use fluid flow approximation and discrete event simulation to determine the influence of the AQM policy on the packet loss probability, queue length and its variability. The impact of the long-range dependent (LRD) traffic is also considered. The obtained results show the properties of the proposed mechanism and the merits of the PIα controller.
Rocznik
Strony
165--178
Opis fizyczny
Bibliogr. 51 poz., rys., tab., wykr.
Twórcy
  • Department of Distributed Systems and Informatic Devices, Silesian University of Technology, ul. Akademicka 16, 44-100 Gliwice, Poland
  • Institute of Theoretical and Applied Informatics, Polish Academy of Sciences, ul. Bałtycka 5, 44-100 Gliwice, Poland
  • Institute of Theoretical and Applied Informatics, Polish Academy of Sciences, ul. Bałtycka 5, 44-100 Gliwice, Poland
autor
  • Institute of Theoretical and Applied Informatics, Polish Academy of Sciences, ul. Bałtycka 5, 44-100 Gliwice, Poland
  • Department of Distributed Systems and Informatic Devices, Silesian University of Technology, ul. Akademicka 16, 44-100 Gliwice, Poland
  • Department of Distributed Systems and Informatic Devices, Silesian University of Technology, ul. Akademicka 16, 44-100 Gliwice, Poland
Bibliografia
  • [1] Abdeljawad, T. (2011). On Riemann and Caputo fractional differences, Computers and Mathematics with Applications 62(3): 1602–1611.
  • [2] Abdeljawad, T., Baleanu, D., Jarad, F. and Agarwal, R.P. (2013). Fractional sums and differences with binomial coefficients, Discrete Dynamics in Nature and Society 2013, Article ID: 104173.
  • [3] Abry, P. and Veitch, D. (1998). Wavelet analysis of long-range-dependent traffic, IEEE Transactions on Information Theory 44(1): 2–15.
  • [4] Adjih, C., Baccelli, E., Fleury, E., Harter, G., Mitton, N., Noel, T., Pissard-Gibollet, R., Saint-Marcel, F., Schreiner, G., Vandaele, J. and Watteyne, T. (2015). FIT IoT-LAB: A large scale open experimental IoT testbed, IEEE 2nd World Forum on Internet of Things (WF-IoT), Milan, Italy, pp. 459–464.
  • [5] Al-Kashoash, H.A.A., Amer, H.M., Mihaylova, L. and Kemp, A.H. (2017). Optimization-based hybrid congestion alleviation for 6LoWPAN networks, IEEE Internet of Things Journal 4(6): 2070–2081.
  • [6] Berte, D.-R. (2018). Defining the IoT, Proceedings of the International Conference on Business Excellence, Bucharest, Romania, Vol. 12, pp. 118–128.
  • [7] Bingi, K., Ibrahim, R., Karsiti, M.N., Hassam, S.M. and Harindran, V.R. (2019). Frequency response based curve fitting approximation of fractional-order PID controllers, International Journal of Applied Mathematics and Computer Science 29(2): 311–326, DOI: 10.2478/amcs-2019-0023.
  • [8] Brun, O., Yin, Y. and Gelenbe, E. (2018). Deep learning with dense random neural networks for detecting attacks against IoT-connected home environments, Procedia Computer Science 134: 458–463.
  • [9] Chou, J.-J., Shih, C.-S., Wang, W.-D. and Huang, K.-C. (2019). IoT sensing networks for gait velocity measurement, International Journal of Applied Mathematics and Computer Science 29(2): 245–259, DOI: 10.2478/amcs-2019-0018.
  • [10] Chandrashekhara, G.B. and Veena, N.K. (2018). Routing in Internet of Things: Review, Proceedings of the 2nd International Conference on Intelligent Computing and Control Systems, Madurai, India, pp. 790–795.
  • [11] Ciesielski, M. and Leszczynski, J. (2002). A numerical method for solution of ordinary differential equations of fractional order, in R. Wyrzykowski et al. (Eds), Parallel Processing and Applied Mathematics, Springer, Berlin/Heidelberg, pp. 695–702.
  • [12] Cucinotta, T., Palopoli, L., Abeni, L., Faggioli, D. and Lipari, G. (2010). On the integration of application level and resource level QoS control for real-time applications, IEEE Transaction on Industrial Informatics 6(4): 479–491.
  • [13] Czachórski, T., Domańska, J. and Pagano, M. (2015). On stochastic models of internet traffic, Communications in Computer and Information Science 564: 289–303.
  • [14] Czachórski, T., Grochla, K. and Pekergin, F. (2007). Stability and dynamics of TCP-NCR(DCR) protocol in presence of UDP flows, in J. García-Vidal and L. Cerdà-Alabern (Eds), Wireless Systems and Mobility in Next Generation Internet, Springer, Berlin/Heidelberg, pp. 241–254.
  • [15] Domańska, J., Augustyn, D.R. and Domański, A. (2012). The choice of optimal 3-rd order polynomial packet dropping function for NLRED in the presence of self-similar traffic, Bulletin of the Polish Academy of Sciences: Technical Sciences 60(4): 779–786.
  • [16] Domańska, J., Domański, A., Augustyn, D.R. and Klamka, J. (2014). A RED modified weighted moving average for soft real-time application, International Journal of Applied Mathematics and Computer Science 24(3): 697–707, DOI: 10.2478/amcs-2014-0051.
  • [17] Domańska, J., Domański, A., Czachórski, T. and Klamka, J. (2016). The use of a non-integer order PI controller with an active queue management mechanism, International Journal of Applied Mathematics and Computer Science 26(4): 777–789, DOI: 10.1515/amcs-2016-0055.
  • [18] Domańska, J., Domański, A., Czachórski, T. and Klamka, J. (2017). Self-similarity traffic and AQM mechanism based on non-integer order PIαDβ controller, in P. Gaj et al. (Eds), Communications in Computer and Information Science, Springer International Publishing, Cham, pp. 336–350.
  • [19] Domańska, J., Domański, A., Czachórski, T., Klamka, J., Marek, D. and Szyguła, J. (2018). The influence of the traffic self-similarity on the choice of the non-integer order PIα controller parameters, in T. Czachórski et al. (Eds), Communications in Computer and Information Science, Springer International Publishing, Cham, pp. 76–83.
  • [20] Domańska, J., Domański, A., Czachórski, T., Klamka, J., Szyguła, J. and Marek, D. (2019). AQM mechanism with the dropping packet function based on the answer of several PIα controllers, in P. Gaj et al. (Eds), Communications in Computer and Information Science, Springer Verlag, Berlin, pp. 400–412.
  • [21] Domański, A., Domańska, J. and Czachórski, T. (2016). The impact of the degree of self-similarity on the NLREDwM mechanism with drop from front strategy, in P. Gaj et al. (Eds), Computer Networks, Springer International Publishing, Cham, pp. 192–203.
  • [22] Dymora, P. and Mazurek, M. (2019). Anomaly detection in IoT communication network based on spectral analysis and Hurst exponent, Applied Sciences 9(24): 1–20.
  • [23] Floyd, S. and Jacobson, V. (1993). Random early detection gateways for congestion avoidance, IEEE/ACM Transactions on Networking 1(4): 397–413.
  • [24] Gong, W.-B., Liu, Y., Misra, V. and Towsley, D. (2005). Self-similarity and long range dependence on the internet: A second look at the evidence, origins and implications, Computer Networks 48(3): 377–399.
  • [25] Gubbi, J., Buyya, R., Marusic, S. and Palaniswami, M. (2012). Internet of Things (IoT): A vision, architectural elements, and future directions, Future Generation Computer Systems 29(7): 1645–1660.
  • [26] Grünwald, A.K. (1867). Uber ”begrenzte” Derivationen und deren Anwendung, Zeitschrift f¨ur Angewandte Mathematik und Physik.
  • [27] Halim, N.H.B., Yaakob, N.B. and Isa, A.B.A.M. (2016). Congestion control mechanism for Internet-of-Things (IOT) paradigm, 3rd International Conference on Electronic Design, Phuket, Thailand, pp. 337–341.
  • [28] Hollot, C., Misra, V., Towsley, D. and Gong, W. (2001). On designing improved controllers for AQM routers supporting TCP flows, 20th Annual Joint Conference of the IEEE Computer and Communications Society (INFOCOM 2001), Anchorage, USA, Vol. 3, pp. 1726–1734.
  • [29] Hsu, W., Li, Q., Han, X. and Huang, C. (2017). A hybrid IoT traffic generator for mobile network performance assessment, International Wireless Communications and Mobile Computing Conference (IWCMC), Valencia, Spain, pp. 441–445.
  • [30] Jiang, T., Ammar, S.I., Chang, B. and Liu, L. (2018). Analysis of an N-policy GI/M/1 queue in a multi-phase service environment with disasters, International Journal of Applied Mathematics and Computer Science 28(2): 375–386, DOI: 10.2478/amcs-2018-0028.
  • [31] Kittipipattanathaworn, P. and Nupairoj, N. (2014). SLA guarantee real-time monitoring system with soft deadline constraint, 2014 11th International Joint Conference on Computer Science and Software Engineering (JCSSE), Chon Buri, Thailand, pp. 52–57.
  • [32] Krajewski, W. and Viaro, U. (2014). On robust fractional order PI controller for TCP packet flow, BOS Conference: Systems and Operational Research, Warsaw, Poland, pp. 493–505.
  • [33] Mandelbrot, B. and Ness, J. (1968). Fractional Brownian motions, fractional noises and applications, SIAM Review 10(4): 422–437.
  • [34] Miao, D., Liu, L., Xu, R., Panneerselvam, J., Wu, Y. and Xu, W. (2018). An efficient indexing model for the fog layer of industrial internet of things, IEEE Transactions on Industrial Informatics 14(10): pp. 4487–4496.
  • [35] Michiels, W., Melchor-Aquilar, D. and Niculescu, S. (2006). Stability analysis of some classes of TCP/AQM networks, International Journal of Control 79(9): 1136–1144.
  • [36] Miller, K. and Ross, B. (1993). An Introduction to the Fractional Calculus and Fractional Differential Equations, Wiley, New York.
  • [37] Misra, V., Gong, W. and Towsley, D. (2000). Fluid-based analysis of network of AQM routers supporting TCP flows with an application to RED, Proceedings of the Conference on Applications, Technologies, Architectures and Protocols for Computer Communication, Stockholm, Sweden, pp. 151–160.
  • [38] Palattella, M.R., Dohler, M., Grieco, A., Rizzo, G., Torsner, J., Engel, T. and Ladid, L. (2016). Internet of things in the 5G era: Enablers, architecture, and business models, IEEE Journal on Selected Areas in Communications 34(3): 510–527.
  • [39] Palopoli, L., Abeni, L., Buttazzo, G., Conticelli, F. and Di Natale, M. (2000). Real-time control system analysis: An integrated approach, 21st IEEE Real-Time Systems Symposium, Orlando, USA, pp. 131–140.
  • [40] Paxson, V. (1997). Fast, approximate synthesis of fractional Gaussian noise for generating self-similar network traffic, ACM SIGCOMM Computer Communication Review 27(5): 5–18.
  • [41] Podlubny, I. (1999). Fractional Differential Equations, Academic Press, San Diego.
  • [42] Quet, P. and Ozbay, H. (2004). On the design of AQM supporting TCP flows using robust control theory, IEEE Transactions on Automatic Control 49(6): 1031–1036.
  • [43] Shafiq, M.Z., Ji, L., Liu, A.X., Pang, J. and Wang, J. (2013). Large-scale measurement and characterization of cellular machine-to-machine traffic, IEEE/ACM Transactions on Networking 21(6): 1960–1973.
  • [44] Skeie, T., Johannessen, S. and Holmeide, O. (2006). Timeliness of real-time IP communication in switched industrial ethernet networks, IEEE Transaction on Industrial Informatics 2(1): 25–39.
  • [45] Stankovic, J. and Rajkumar, R. (2004). Real-time operating systems, Real-Time Systems Journal 28(2–3): 237–253.
  • [46] Stoica, I., Morris, R., Karger, D., Frans Kaashoek, M. and Balakrishnan, H. (2001). Chord: A scalable peer-to-peer lookup service for internet applications, Proceedings of the 2001 Conference on Applications, Technologies, Architectures and Protocols for Computer Communications, San Diego, USA, Vol. 31, pp. 149–160.
  • [47] Taqqu, M. and Teverovsky, V. (1998). On estimating the intensity of long-range dependence in finite ANF infinite variance time series, in R. Adler et al. (Eds.), A Practical Guide To Heavy Tails: Statistical Techniques and Applications, Birkhauser, Boston, pp. 177–217.
  • [48] Wang, B. (2009). Priority and Real Time Data Transfer over the Best-Effort Internet, VDM Verlag, Saarbrücken.
  • [49] Wijnants, M. and Lamotte, W. (2008). Managing client bandwidth in the presence of both real-time and non real-time network traffic, Proceedings of the 3rd International Conference on Communication Systems Software and Middleware (COMSWARE 2008), Bangalore, India, pp. 442–450.
  • [50] Willinger, W., Leland, W. and Taqqu, M. (1994). On the self-similar nature of traffic, IEEE/ACM Transactions on Networking 2(1): 1–15.
  • [51] Zheng, B. and Atiquzzaman, M. (2000). DSRED: A new queue management scheme for next generation networks, 25th Annual IEEE Conference on Local Computer Networks, Tampa, USA, pp. 242–251.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ac02134a-3e72-4562-9a79-dd1454c9a4ba
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.