Powiadomienia systemowe
- Sesja wygasła!
Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This study addresses the substantial terrestrial gamma radiation exposure and associated radiological risk in the Amsoi region, located in the seismically active Kopili Fault Zone (KFZ) on the periphery of Shillong Plateau’s gneissic complex. A portable monitoring device highly sensitive to gamma radiation, equipped with a NaI (Tl) scintillator, was used to quantify the terrestrial gamma dose rates in indoor and outdoor air. The recorded dose rates varied among house patterns, with mud houses having the highest. The calculated absorbed dose rates indoors and outdoors were found to be in the range of 157.9-362.5 nGy h-1 and 163.7-336.2 nGy h-1, respectively, which are much higher than the reported population-weighted global averages of 84 nGy h-1 and 59 nGy h-1. The indoor-to-outdoor ratio was also calculated and found to be in the range of 0.7-1.4. The elevated terrestrial gamma radiation could be attributed to the geological setting of the study area, located in the seismically active KFZ. The annual effective dose equivalents for indoor and outdoor environments were calculated and found to be in the ranges of 0.8-1.8 mSv and 0.2-0.4 mSv, respectively. The excess lifetime cancer risk was assessed by calculating the lifetime effective dose and was found to be in the range of 3.4 X 10-3 -7.3 X 10-3, which is considerably higher than the global average of 1.45 X 10-3. This study has revealed that the populations residing in this seismically active fault zone are living precariously under high terrestrial gamma radiation.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
527--536
Opis fizyczny
Bibliogr. 49 poz.
Twórcy
autor
- Department of Physics, Cotton University, Guwahati, Assam 781001, India
autor
- Department of Geological Sciences, Gauhati University, Guwahati, Assam 781014, India
autor
- Department of Physics, Cotton University, Guwahati, Assam 781001, India
Bibliografia
- 1. Ali MA, Duarah BP (2022) Tectono-stratigraphic evolution of Shillong Plateau, North East India through the Permian-Eocene window. Geol J 57:5127-5148. https://doi.org/10.1002/gj.4516
- 2. Barbosa S, Huisman JA, Azevedo EB (2018) Meteorological and soil surface effects in gamma radiation time series—implications for assessment of earthquake precursors. J Environ Radioact 195:72- 78. https://doi.org/10.1016/j.jenvrad.2018.09.022
- 3. Ciotoli G, Bigi S, Tartarello C, Sacco P, Lombardi S, Ascione A, Mazzoli S (2014) Soil gas distribution in the main coseismic surface rupture zone of the 1980, Ms = 6.9, Irpinia earthquake (southern Italy). J Geophys Res Solid Earth 119:2440-2461. https://doi.org/10.1002/2013JB010508
- 4. Dasgupta S, Nandy DR (1982) Seismicity and tectonics of Meghalaya plateau, NE India. In: Seventh symposium on earthquake engineering. University of Roorkee. pp 19-24
- 5. Dodge-Wan D, Viswanathan PM (2021) Terrestrial gamma radiation dose rate mapping and influence of building materials: case study at Curtin university campus (Miri, Sarawak, Malaysia). J Radioanal Nucl Chem 328:163-180. https://doi.org/10.1007/s10967-021-07641-y
- 6. Ershov B (2022) Natural radioactivity and chemical evolution on the early earth: prebiotic chemistry and oxygenation. Molecules 27:8584. https://doi.org/10.3390/molecules27238584
- 7. Ghosal S, Agrahari S, Banerjee D, Sengupta D (2021) Assessment of a naturally occurring high background radiation area with elevated levels of thorium along coastal Odisha. India Using Radiom Methods Chemosphere 283:131221. https://doi.org/10.1016/j.chemosphere.2021.131221
- 8. Gogoi PP, Barooah D (2022) Assessment of radon exhalation rates, effective radium content and radiological exposure dose, of coal and rocks in Tiru Valley Coal Field, India using track etched technique. Phys Scr 97:085005. https://doi.org/10.1088/1402-4896/ac7e01
- 9. Gogoi PP, Phukan S, Barooah D (2023) Radiological risk estimation from the terrestrial gamma dose rate in the seismically active Kopili Fault Zone, India. Int J Environ Anal Chem. https://doi.org/10.1080/03067319.2023.2294489
- 10. Gogoi PP, Phukan S, Barooah D (2024) Measurements of 222 Rn exhalation rates, effective 226 Ra contents, and radiological risks from geological samples of Kopili Fault Zone and gneissic complex of Shillong Plateau, India. Radiochim Acta 12:183-195. https://doi.org/10.1515/ract-2023-0232
- 11. Gümüş AS (2024) Investigation of the relationship between the decline in well waters radon anomalies and the earthquake magnitude (Mw). J Radioanal Nucl Chem 333:2307-2320. https://doi.org/10.1007/s10967-024-09457-y
- 12. Günay O, Eke C (2019) Determination of terrestrial radiation level and radiological parameters of soil samples from Sariyer-Istanbul in Turkey. Arabian J Geosci 12:631. https://doi.org/10.1007/s12517-019-4830-1
- 13. IAEA (1989) Uranium deposits in magmatic and metamorphic rocks. Proceedings of a Technical Committee meeting, Salamanca, 29 September-3 October, 1986. International Atomic Energy Agency, Vienna: Austria, pp 1-268.
- 14. IARC (1988) IARC Working Group on the Evaluation of Carcinogenic Risks to Humans., International Agency for Research on Cancer., National Cancer Institute (U.S.) Man-made mineral fibres and radon. World Health Organization, International Agency for Research on Cancer: Lyon, France, p 300.
- 15. ICRP (1990) Annals of the ICRP Published on behalf of the international Commission on Radiological Protection Members of the Main Commission of the ICRP, Publication 60. UK Pergamon Press, Oxford.
- 16. ICRP (2007) Annals of the ICRP Published on behalf of the International Commission on Radiological Protection, 37: 1-332; Publication 103. UK Pergamon Press, Oxford.
- 17. Jędrzejek F, Szarłowicz K, Stobiński M (2022) A geological context in radiation risk assessment to the public. Int J Environ Res Public Health 19:1175. https://doi.org/10.3390/ijerph191811750
- 18. Jindal MK, Sar SK (2020) Statistical Comparative study of the gamma dose rate and associated risk assessment in rural and urban areas of Durg District, Chhattisgarh, India. Radiochemistry 62:275- 287. https://doi.org/10.1134/S1066362220020186
- 19. Jindal MK, Sar SK, Singh S, Arora A (2018) Risk assessment from gamma dose rate in Balod District of Chhattisgarh, India. J Radioanal Nucl Chem 317:387-395. https://doi.org/10.1007/s10967-018-5846-9
- 20. Jindal MK, Sar SK, Baghel T, Wadhwa DS (2021) Statistical study of the factors affecting outdoor gamma dose rate and impact of season. JGSI 97:85-93. https://doi.org/10.1007/s12594-021-1629-y
- 21. Joel ES, Omeje M, Olawole OC, Adeyemi GA, Akinpelu A, Embong Z, Saeed MA (2021) In-situ assessment of natural terrestrial- radioactivity from Uranium-238 (238U), Thorium-232 (232Th) and Potassium-40 (40K) in coastal urban-environment and its possible health implications. Sci Rep 11:1-14. https://doi.org/10.1038/s41598-021-96516-z
- 22. Kandari T, Singh P, Semwal P, Kumar A, Bourai AA, Ramola RC (2021) Evaluation of background radiation level and excess lifetime cancer risk in Doon valley, Garhwal Himalaya. J Radioanal Nucl Chem 330:1545-1557. https://doi.org/10.1007/s10967-021-07988-2
- 23. Kayal JR (2008) Microearthquake seismology and seismotectonics of South Asia. Springer, Netherlands Dordrecht, pp 1-503
- 24. Kumar D, Reddy DV, Pandey AK (2016) Paleoseismic investigations in the Kopili Fault Zone of North East India: Evidences from liquefaction chronology. Tectonophysics 674:65-75. https://doi.org/10.1016/j.tecto.2016.02.016
- 25. Kurnaz A, Turhan A, Hançerlioǧullarl A, Goren E, Karataşlı M, Altıkulaç A, Erer AM, Metin O (2020) Natural radioactivity, radon emanating power and mass exhalation rate of environmental soil samples from Karabuk province, Turkey. Radiochim Acta 108:573-579. https://doi.org/10.1515/ract-2019-3188
- 26. Miklyaev PS, Petrova TB, Marennyy AM, Shchitov DV, Sidyakin PA, Murzabekov MA, Lopatin MN (2020) High seasonal variations of the radon exhalation from soil surface in the fault zones (Baikal and North Caucasus regions). J Environ Radioact 219:106271. https://doi.org/10.1016/j.jenvrad.2020.106271
- 27. Monica S, Prasad AKV, Soniya SR, Jojo PJ (2017) An the mbient gamma levels in the seaside regions of Alapuzha district, Kerala. Int J Pure Appl Phys 13:179-187
- 28. Muto J, Yasuoka Y, Miura N, Iwata D, Nagahama H, Hirano M, Ohmomo Y, Mukai T (2021) Preseismic atmospheric radon anomaly associated with 2018 Northern Osaka earthquake. Sci Rep 11:1-8. https://doi.org/10.1038/s41598-021-86777-z
- 29. Ngaihte P, Zomawia E, Kaushik I (2019) Cancer in the NorthEast India: Where we are and what needs to be done? Indian J Public Health 63:251-253. https://doi.org/10.4103/ijph.IJPH_323_18
- 30. Pandey A, Jayangondaperumal R, Hetenyi G, Priyanka RS, Singh I, Srivastava P, Srivastava HB (2021) Establishing primary surface rupture evidence and magnitude of the 1697 CE Sadiya earthquake at the Eastern Himalayan Frontal thrust, India. Sci Rep 11:1-14. https://doi.org/10.1038/s41598-020-79571-w
- 31. Rafique M, Rahman SU, Basharat M, Aziz W, Ahmad I, Lone KA, Ahmad K, Matiullah (2014) Evaluation of excess life time cancer risk from gamma dose rates in Jhelum valley. J Radiat Res Appl Sci 7:29-35. https://doi.org/10.1016/j.jrras.2013.11.005
- 32. Rahman MM, Rahman MS, Khan MHR, Yeasmin S (2023) Assessment of radiation level and potential risk to public living around major hospitals in central and western Bangladesh. Heliyon 9:e19774. https://doi.org/10.1016/j.heliyon.2023.e19774
- 33. Reddy GS, Reddy KVK, Reddy BS, Reddy BL, Reddy MS, Reddy CG, Reddy PY (2021) Mapping of ambient gamma radiation levels and risk assessment in some parts of Eastern Deccan Plateau, India. Int J Environ Anal Chem 103:1-13. https://doi.org/10.1080/03067 319.2021.1938020
- 34. Salikhov N, Shepetov A, Pak G, Nurakynov S, Ryabov V, Saduyev N, Sadykov T, Zhantayev Z, Zhukov V (2022) Monitoring of gamma radiation prior to earthquakes in a study of lithosphere-atmosphere-ionosphere coupling in Northern Tien Shan. Atmosphere (Basel) 13:1667. https://doi.org/10.3390/atmos13101667
- 35. Sebela S, Vaupotic J, Kostak B, Stemberk J (2010) Direct measurement of present-day tectonic movement and associated radon flux in Postojna Cave, Slovenia. J Cave Karst Studies 72:21-34. https://doi.org/10.4311/jcks2009es0077
- 36. Selvasekarapandian S, Lakshmi KS, Brahmanandhan GM, Meenakshisundaram V (2005) Indoor gamma dose measurement along the East coast of Tamilnadu, India using TLD. Int Congr Ser 1276:327-328. https://doi.org/10.1016/j.ics.2004.10.026
- 37. Shanker N, Mathur P, Das P, Sathishkumar K, Shalini AJM, Chaturvedi M (2021) Cancer scenario in North-East India & need for an appropriate research agenda. Indian J Med Res 154:27-35. https://doi.org/10.4103/ijmr.IJMR_347_20
- 38. Singh P (2005) An integrated approach in geophysical investigation—a case study of Kopili Valley, Assam Arakan basin, India. In: SEG Technical Program Expanded Abstracts 2005. Society of Exploration Geophysicists, pp 659-662
- 39. Sonkawade RG, Kant K, Muralithar S, Kumar R, Ramola RC (2008) Natural radioactivity in common building construction and radiation shielding materials. Atmos Environ 42:2254-2259. https://doi.org/10.1016/j.atmosenv.2007.11.037
- 40. Sutar AK, Verma M, Pandey AP, Bansal BK, Prasad PR, Rao PR, Sharma B (2017) Assessment of maximum earthquake potential of the Kopili fault zone in northeast India and strong ground motion simulation. J Asian Earth Sci 147:439-451. https://doi. org/10.1016/j.jseaes.2017.07.035
- 41. Tanwer N, Anand P, Batra N, Kant K, Gautam YP, Sahoo SK (2022) Measurement of seasonal variation of outdoor gamma radiation dose rate level and assessment of consequent health hazards in Panchkula, Haryana, India. Radiochemistry 64:424-431. https://doi.org/10.1134/S1066362222030213
- 42. Taskin H, Karavus M, Ay P, Topuzoglu A, Hidiroglu S, Karahan G (2009) Radionuclide concentrations in soil and lifetime cancer risk due to gamma radioactivity in Kirklareli, Turkey. J Environ Radioact 100:49-53. https://doi.org/10.1016/j.jenvrad.2008.10.012
- 43. Thomas JR, Sreejith MV, Aravind UK, Sahu SK, Shetty PG, Swarnakar M, Takale RA, Pandit G, Aravindakumar CT (2022) Outdoor and indoor natural background gamma radiation across Kerala, India. Environ Sci: Atmos 2:65-72. https://doi.org/10.1039/D1EA00033K
- 44. Ugbede FO, Akpolile AF, Oladele BB, Agbajor GK, Popoola FA (2022) Ingestion exposure and committed health risk of natural radioactivity and toxic metals in local rice sold in Enugu urban markets. Int J Environ Anal Chem 104:1202-1222. https://doi.org/10.1080/03067319.2022.2036983
- 45. UNSCEAR (2000) Sources and effects of ionizing radiation: United Nations Scientific Committee on the Effects of Atomic Radiation: UNSCEAR 2000 report to the General Assembly, with scientific annexes. United Nations Publication, New York, USA.
- 46. Uosif MAM, El-Taher A, Abbady AGE (2008) Radiological significance of beach sand used for climatotherapy from Safaga. Egypt Radiat Prot Dosimetry 131:331-339. https://doi.org/10.1093/rpd/ncn175
- 47. Vaupotic J, Gregoric A, Kobal I, Zvab P, Kozak K, Mazur J, Kochowska E, Grzadziel D (2010) Natural Hazards and earth system sciences radon concentration in soil gas and radon exhalation rate at the ravne fault in NW Slovenia. Nat Hazards Earth Syst Sci 10:895-899
- 48. WHO (2009) WHO Handbook on Indoor Radon: A Public Health Perspective, World Health Organization: Geneva, Switzerland.
- 49. Zeb J, Wasim M, Awais M, Ullah A, Iqbal T, Akhtar S (2020) Evaluation of indoor/outdoor gamma exposure rates and excess life time cancer risk in different cities of Pakistan. Radiat Prot Dosimetry 190:355-363. https://doi.org/10.1093/rpd/ncaa115
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ac007403-3a29-4235-a4c0-b483b3fa6f67
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.