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AXISYMMETRIC THERMAL STRESSES
IN A HALF-SPACE IN THE FRAMEWORK
OF FRACTIONAL THERMOELASTICITY

YURIY POVSTENKO

ABSTRACT

A theory of thermal stresses based on the time-fractional heat conduction equation
is considered. The Caputo fractional derivative is used. The fundamental solution to
the axisymmetric heat conduction equation in a half-space under the Dirichlet boundary

condition and the associated thermal stresses are investigated.

1. INTRODUCTION

Numerical applications of fractional calculus to problems of mechanics
can be found in the literature. We can quote investigations on viscoelas-
ticity [6], creep [20], hereditary mechanics of solids [21]|, Brownian motion
[5], stress and strain localization in solids [1] (see also [4], [22], [23], [26],
[27]). The theory of thermal stresses based on the time-fractional heat con-
duction equation was proposed by the author [11] and was developed in
the subsequent studies [12], [13], [15]-[17]. Axisymmetric problems for the
time-fractional heat conduction equation in a half-space were investigated
in [14]. In this paper we study associated thermal stresses.

2. FORMULATION OF THE PROBLEM

A thermoelastic state of a solid is governed by the equilibrium equation
in terms of displacements

(1) pAu+ (A + p) graddiva = SrKpgrad T,
the stress-strain-temperature relation

(2) o =2ue+ (Atre — fr K711,
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and the time-fractional heat conduction equation
0T

3

(3) 5

Here u is the displacement vector, o the stress tensor, e the linear strain

tensor, T the temperature, A\ and p are Lamé constants, Kp = A 4+ 2u/3,

B is the thermal coefficient of volumetric expansion, a denotes the thermal

diffusivity, I stands for the unit tensor, and g% is the Caputo fractional

derivative [2], 3], [10]
RO [ dE)
JACE ar.

=aAT, 0<a<2.

n—1l1<a<n,

e I'n—« drn

where I'(x) is the gamma function.
The Caputo derivative has the following Laplace transform rule

a n—1
c {d f(t)} =M1 (s) = D fPON T n—1<a<n,
k=0

dte

where the asterisk denotes the Laplace transform, s is the transform vari-
able.
In this paper we will consider the axisymmetric fractional heat conduction

equation

" I (0T Lo o
ote or2 r or 022

in the domain 0 < r < o0, 0 < z < 00, 0 <t < oo under zero initial

conditions

>, 0<a<g?2,

(5) t=0: T =0, 0<a<?2,
oT

6 t=0: — =0 1 <2

( ) at ) < a — Y

and the Dirichlet boundary condition

(7) z=0: T = f(r1t).

The zero conditions at infinity

(8) TlggloT(r,z,t) =0, ZlggloT(r,z,t) =0

are also assumed.

In the quasi-static statement of the thermoelasticity problem, initial val-
ues of mechanical quantities are not considered. The boundary of a half-
space is load free, hence

(9) z2=0: 0,,=0, o0,,=0.
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3. REPRESENTATION OF STRESSES

Just as in the classical theory of thermal stresses [8], [9], we can introduce
the displacement potential ®

(10) u = grad ®.
In the quasi-static case, from the equilibrium equation (1) we get
1+v Br
11 AD =mT = =
(1) T, m= L

with v being the Poisson ratio. The part of stresses due to the displacement
potential ® describes the influence of the temperature field and is given as

(12) o) =24 (grad grad ® — IA®) .
In cylindrical coordinates in the case of axial symmetry
*¢ 190 0?0

(13) i T =mi,
2
(14) o) = 2u Eauye
r 8r
1 1 0P
82q>
1 1) — 2 —AD
(16) o = |G ]
9P
1 1 — 9 .
(17) g e

The Hankel transform of order n with respect to the radial coordinate r

w0 }—/ F() Ju(re) rdr,

") = /0 Hewy (7)) Tu(r€) € €

is often used for solving problems in cylindrical coordinates. The following
formulae are helpful in applications [25]

2 r r TL2

Ho{ G

{de(r)l

} M L)}
df

f(r)
dr

} €4 (£(r)}.
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In the case n = 0, simultaneously with the notation H ) {f(r)}, we will

~

use the notation H gy {f(r)} = f(§).
From (14)—(17) we have

.
1 1 _ 23 7%
(18) Heoy {0l +ofy) } = 2088 — 4u",
(19) Heoy {0l = ol } = 2068,
(20) H(0) {0’22} = 269,
G
(21) Hy {Uﬁ)} = —2u5—.
It follows from (11) that
P
22 — =P =mT.
(22) 9.2 ¢ m

The general solution of the homogeneous equation (22) has the form
(23) EI\) = Cle_sz + 02652,

where the integration constant Cy should be equal to zero according to
the condition at infinity (8). To find the particular solution of the non-
homogeneous equation (22) we consider the following equation

(24) .2 §2¢) = (Z),

where 0(z) is the Dirac delta function. The solution of (24) is written as

~ 1
25 P = —— ¢l
(25) ¢
Hence, the particular solution of (22) is represented in the convolution form
- 1 [ -
(26) (I)<£7Zat) = _E T(§7777t) e—élz—nl dn.
0

Assuming in (23) C = 0, we get

(27) Hioy {0l } = —ume /0 T(e, 1) el dp

(28)  Hq) {05«?} = —um£/0 T(g,n,t) e sign (2 — ) dn.
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The part of stress field expressed in terms of the biharmonic Love function

(29) o2 = 2u§ VAL - ZZ’] :
(30) obd) = 2u§ VAL - % gﬂ
(31) c? = 2“52 :(2 — V)AL — ‘;ZJ]
(32) c@ = 2#5 (1 — V)AL — Zﬂ
with

w (210 2)

allows us to satisfy the prescribed boundary conditions for the components
of the total stress tensor & = o) + o).

In the Hankel transform domain the biharmonic equation for the Love
function

o\’
o (2 )im
has the solution bounded at z — oo:
(35) L= (A+ B¢z)e &,

where A and B are constants which should be found from the boundary
conditions.
In the Hankel transform domain we have

(36) M {053) + ag?} = 2u€3 [~ A+ (1 + 4v)B — BE2]e 2,
(87) My {o@ — o)} = 2> (A~ B+ Bez)e ™,
(38) Hoy {02} = 20 [A+ (1 - 2)B + Bez]e €,

(39) My {2} = 26" (4 - 20B 1 Bez) o
From the load free boundary condition (9) we obtain

(40) Ho{ol) +0@} =0, #Hi{ol) +02} =0,

1—4 % _ 0o _
g dym 2V>m/ T(&n,t)e " dn, an;/ T (&, n,t)e " dn,
2¢ 0 & Jo
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Hoy {022} = um /Oooff(i, n,t) [(252 +1)e 8= e_g'z‘"'} dn,

Hy{ors} = pm /0 Tt [(252 —1)e 8= _ o=t gign (2 — 77)} dn.

4. SOLUTION TO THE FRACTIONAL HEAT CONDUCTION EQUATION

We start from the fundamental solution to the Dirichlet problem for the
time-fractional heat conduction equation (4) with zero initial conditions (5)
and (6) and the prescribed boundary value of temperature

Uo
41 =0: T=—4050r)0t).
(41) 2 260 5(1)
In the case of the Dirichlet boundary condition at a surface z = 0 the

sin-Fourier transform is used:

FAG) = Fo = [ 1) sinfen)
F{F} =10 =2 [ Fo sinten) o
A — i s

dZ2 z=
where the tilde denotes the Fourier transform, 7 is the transform variable.
Applying the Laplace transform with respect to time ¢, the Hankel trans-
form with respect to the radial coordinate r, and the sin-Fourier transform
with respect to the spatial coordinate z gives

~

(42) T _ aUon 1
2r s+ a(@ + 1)

or after inversion of integral transforms [14]

a—1 [e¢) [e%e)
(43) T = aUSTtQ/O /0 Eo [—a(fQ + n2)ta} Jo(r€) sin(zn) Endg dn.

Here the following formula [10]

[ 8278 _ N
¢ l{sub}:’fﬁ " Ea (1)

has been used, where E, g(z) is the Mittag-Leffler function in two parame-
ters a and 3 [3].

It should be emphasized that partition of the total stress tensor o into
the stress tensors o) and o? is not unique. Sometimes, it is helpful to
suppose that CI“Z:O = 0 [8]. In this case, the sin-Fourier transform with
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respect to the spatial coordinate z (as well as the Laplace transform with
respect to time t) can be applied to (22) resulting in

o— anmtO‘ 1/ / Fuu [~ §+77)ta]

£n
&+

The stress tensor o(1) has the following components:

2umalot®=t [0 [ o
0'7(’}‘) = — a 2 / / Ea,a [_a(§2 + 772)t ]
™ 0 0

(44)

X Jo(r€) sin(zn) d§ dn.

(45)
5254177] [f Ji(ré) + ano(rf)} sin(zn) d¢ dn,
2 U, a—1 o0 00
o — _ % /0 /0 B [a(€2 + 2)t°]
(46)
X 525_;77]2 [(52 + 772) Jo(r€) — % J1 (rf)] sin(zn) d¢ dn,
2 U a—1 o0 oo
o _ % /0 /0 Bua [a(? + 2)t°]
(47)
€2€+n 5 Jo(rg) sin(zn) dg dn,
2 U, a—1 00 o0
o7 = ;m7r20t/0 /0 Eo o [~a(€ +n*)t°]
(48) o
< g3 (re) cos(en) A€,
It follows from the load free condition (41) that
(49) A=—-(1-2v)B,
_ malpt®™1 [ R L
0 0 ] g

To investigate several particular cases of the obtained solution it is con-
venient to pass to polar coordinates in the (£, n)-domain:

& =pcos?, n = psind.
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Equation (43) for temperature is rewritten as

antafl

00
T = 5 / QgEa7a(—aQ2tOé) dQ
0

™

61 /2
X / Jo(rocos?d) sin(zpsind) sind cos v dd.
0

Substitution v = cos ¥ and evaluation of the arising integral [19]

/1 z sin (b\/ 1-— x2> Jo(cx)dz = ein <\/m> beos <m)
0

(b2 + ¢2)3/2 N b2 + 2
allows us to obtain

aUpt* 12 /OO 2
= “ Ega(—ag*t®
7l'2(7’2+2’2>3/2 0 Q Ot,Oé( Q )

(52)
X {sin (g r? + z2> — 0V 1%+ 22 cos (g r2 + 22)} do.
Similarly,
malUpt® 1z /°° 1 9
b= - ——— — By o(—ap®t?)
(53) 7r2(7“2 + 22)3/2 0 0 o

X {sin (g r? 4 z2> —oVr?+ 22 cos (g r? 4 zz)} do.

Now we investigate several particular cases of the obtained solution. For
classical thermoelasticity o = 1 and Ej ;(—z) = e~*. Taking into account
that

oo b2 b2
/0 g2 e @ cos(bx)dz = ;{j; (1 - M) exp <4a2> , a>0,

and [18|

we obtain

Upz r? + 22
(54 T~ e o (- ’
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maUyz R R R?
55) & = ——— |erf — - =/r? 2
(55) 21 R3/2 [er (2@) Vrat exp( 4at>]’ r Tt

_ maly 1 _ate?
(56) B = o {\/@f e ot erfc(\/ﬁf)] :

In the case of heat conduction with aw = 1/2

(57) Eyy9,1/2(— f/ e T 2uy dy

and

UOZ /OO 1 ( 2 T +z )
58 T = exp | —v
(58) 16v/2m2a3/2t7/4 [y ©v3/2 P 8varv/t

- _ malUyz 0 orf R
T T BRRI2E ), "\ 982071 /g
(59)
B R ox ( R? >
V2mravtl/4 P 8av/tv
U, o) —2av/tv€?
(60) B =10 ve | S — erfe (vV2avt'/4€) | dv

w32/t € Jo V2ravtl/A¢

Using the integral transform technique, similar results can be obtained for
other types of boundary conditions for the time-fractional heat conduction
equation.
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