Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Conservation areas protect biodiversity and ecosystems from human activities and climate change threats. Understanding disturbances that can damage conservation areas drives the need for effective mapping and monitoring. One of the primary disturbances is land cover change caused by forest fires, illegal logging, and other human activities. In this context, remote sensing algorithms such as LandTrendr offer an efficient approach to monitoring vegetation changes and disturbances in conservation areas. This study aims to monitor vegetation changes and disturbances in Gunung Merbabu National Park using the LandTrendr algorithm. Landsat image data from 1994 to 2023 was analyzed using Google Earth Engine. The results showed that the LandTrendr algorithm effectively identified vegetation changes, with forest fires being the primary disturbance. During 1994–2022, total vegetation loss and gain were detected at 933.57 ha and 2279.52 ha, respectively. The results highlight significant changes in the core zone of Gunung Merbabu National Park, mainly due to fires and logging activities. These findings provide a better understanding of the dynamics of vegetation change in Gunung Merbabu National Park and provide relevant insights for conservation area managers to implement appropriate mitigation measures. This research contributes to the literature on monitoring vegetation changes in conservation areas and provides a basis for more effective conservation efforts in Gunung Merbabu National Park and similar areas.
Wydawca
Rocznik
Tom
Strony
298--307
Opis fizyczny
Bibliogr. 41 poz., rys., tab.
Twórcy
autor
- Natural Resources and Environmental Management Study Program, IPB University, Baranangsiang Campus, Bogor, 16144, Indonesia
autor
- Department of Forest Resource Conservation and Ecotourism, Faculty of Forestry and Environment, IPB University, Dramaga Campus, Bogor, 16113, Indonesia
autor
- Department of Silviculture, Faculty of Forestry and Environment, IPB University, Dramaga Campus, Bogor, 16113, Indonesia
autor
- Department of Forest Resource Conservation and Ecotourism, Faculty of Forestry and Environment, IPB University, Dramaga Campus, Bogor, 16113, Indonesia
Bibliografia
- 1. Ansari A., Golabi MH. 2019. Prediction of spatial land use changes based on LCM in a GIS environment for Desert Wetlands – A case study: Meighan Wetland, Iran. Int. Soil Water Conserv. Res. 7: 64–70.
- 2. Ardiaristo A., Prasetyo L.B., Syaufina L., Kosmaryandi N. 2022. The dynamics of land cover in conservation areas using cloud computing platform: Cases in Gunung Merbabu National Park. In: IOP Conference Series: Earth and Environmental Science.
- 3. Banskota A., Kayastha N., Falkowski M.J., Wulder M.A., Froese R.E., White J.C. 2014. Forest Monitoring Using Landsat Time Series Data: A review. Can. J. Remote Sens. 40: 362–384.
- 4. Begon M., Harper JL., Townsend CR. 1986. Ecology: individuals, populations and communities. Ecol. Individ. Popul. communities.
- 5. BTNGMb. 2019a. Laporan Kinerja 2018 Balai Taman Nasional Gunung Merbabu. Boyolali (ID): Balai Taman Nasional Gunung Merbabu.
- 6. BTNGMb. 2014. Rencana Pengelolaan Taman Nasional Gunung Merbabu Periode 2014-2023(review). Boyolali (ID): Balai Taman Nasional Gunung Merbabu. (in Indonesian).
- 7. BTNGMb. 2019b. Statistik Balai Taman Nasional Gunung Merbabu Tahun 2018. Boyolali (ID): Balai Taman Nasional Gunung Merbabu. (in Indonesian).
- 8. BTNGMb. 2020. Zona Pengelolaan (Revisi) Taman Nasional Gunung Merbabu Kabupaten Boyolali, Semarang dan Magelang Provinsi Jawa Tengah. Boyolali (ID): Balai Taman Nasional Gunung Merbabu. (in Indonesian).
- 9. BTNGMb. 2018. Zona Pengelolaan Taman Nasional Gunung Merbabu. Boyolali (ID): Balai Taman Nasional Gunung Merbabu. (in Indonesian).
- 10. Chen G., Zhong C., Li M., Yu Z., Liu X., Jia M. 2022. Disturbance of mangrove forests in Guangxi Beilun Estuary during 1990—2020. Natl. Remote Sens. Bull. 26: 1112 – 1120.
- 11. Cohen W.B., Yang Z., Healey SP., Kennedy RE., Gorelick N. 2018. A LandTrendr multispectral ensemble for forest disturbance detection. Remote Sens. Environ. 205: 131–140.
- 12. Cohen W.B., Yang Z., Kennedy R. 2010. Detecting trends in forest disturbance and recovery using yearly Landsat time series: 2. TimeSync — Tools for calibration and validation. Remote Sens. Environ. 114: 2911–2924.
- 13. Coops N., Wulder., White J. 2007. Identifying and describing forest disturbance and spatial pattern. In: Wulder MA, Franklin SE, editors. Understanding Forest Disturbance and Spatial Pattern; Remote Sensing and GIS Approaches. Florida (US): CRC Press, p 31–61.
- 14. Ding N., Li M. 2023. Mapping forest abrupt disturbance events in southeastern China—comparisons and tradeoffs of Landsat time series analysis algorithms. Remote Sens. 15.
- 15. Fu B., Lan F., Xie S., Liu M., He H., Li Y., Liu L., Huang L., Fan D., Gao E., Chen Z. 2022. Spatiotemporal coupling coordination analysis between marsh vegetation and hydrology change from 1985 to 2019 using LandTrendr algorithm and Google Earth Engine. Ecol. Indic. 137.
- 16. Hardian A.S., Firmansyah K.H., Aprazah AS., Pritta B.K., Ekowati Ratnaningrum E., Wahyudi J., Dewi K., Sulaksono N., Putra R., Sayudi D.S., Santoso A.B., Cholik N., Agusta R., Rusiani Hidayat S., Doludea T., Kristianto D. 2020. Mandala Merbabu, Seri Ekologi Merbabu Buku I. Harlan M, Sulaksono N, editors. Boyolali (ID): Balai Taman Nasional Gunung Merbabu. (in Indonesian).
- 17. He T., Guo J., Xiao W., Xu S., Chen H. 2023. A novel method for identification of disturbance from surface coal mining using all available Landsat data in the GEE platform. ISPRS J. Photogramm. Remote Sens. 205: 17 – 33.
- 18. Hirschmugl M., Deutscher J., Sobe C., Bouvet A., Mermoz S., Schardt M. 2020. Use of SAR and optical time series for tropical forest disturbance mapping. Remote Sens. 12.
- 19. Kennedy R., Yang Z., Gorelick N., Braaten J., Cavalcante L., Cohen W., Healey S. 2018. Implementation of the LandTrendr Algorithm on Google Earth Engine. Remote Sens. 10: 691.
- 20. Kennedy R.E., Yang Z., Cohen W.B. 2010. Detecting trends in forest disturbance and recovery using yearly Landsat time series: 1. LandTrendr - Temporal segmentation algorithms. Remote Sens. Environ. 114: 2897 – 2910.
- 21. Komba A.W., Watanabe T., Kaneko M., Chand M.B. 2021. Monitoring of vegetation disturbance around protected areas in central tanzania using landsat time-series data. Remote Sens. 13.
- 22. Kulakowski D., Buma B., Guz J., Hayes K. 2019. The Ecology of Forest Disturbances. Elsevier Inc. 1–12 p.
- 23. Li M., Zuo S., Su Y., Zheng X., Wang W., Chen K., Ren Y. 2023. An approach integrating multi-source data with LandTrendr Algorithm for refining forest recovery detection. Remote Sens. 15.
- 24. Li Y., Wu Z., Xu X, Fan H., Tong X., Liu J. 2021. Forest disturbances and the attribution derived from yearly Landsat time series over 1990–2020 in the Hengduan Mountains Region of Southwest China. For. Ecosyst. 8.
- 25. Liang L., Hawbaker T.J, Zhu Z, Li X, Gong P. 2016. Forest ecology and management forest disturbance interactions and successional pathways in the Southern Rocky Mountains. For. Ecol. Manage. 375: 35–45.
- 26. Liu Y., Xie M., Liu J., Wang H., Chen B. 2022. Vegetation disturbance and recovery dynamics of different surface mining sites via the LandTrendr Algorithm: Case study in Inner Mongolia, China. Land 11.
- 27. Nguyen T.H., Jones S.D., Soto-Berelov M., Haywood A., Hislop S. 2018. A spatial and temporal analysis of forest dynamics using Landsat timeseries. Remote Sens. Environ. 217: 461–475.
- 28. Quintero N., Viedma O., Urbieta I.R., Moreno J.M. 2019. Assessing landscape fire hazard by multitemporal automatic classification of landsat time series using the Google Earth Engine in west-central Spain. Forests 10: 518.
- 29. Roy D.P., Kovalskyy V., Zhang HK., Vermote E.F., Yan L., Kumar S.S., Egorov A. 2016. Characterization of Landsat-7 to Landsat-8 reflective wavelength and normalized difference vegetation index continuity. Remote Sens. Environ. 185: 57–70.
- 30. Shen J., Chen G., Hua J., Huang S., Ma J. 2022. Contrasting forest loss and gain patterns in subtropical China detected using an integrated LandTrendr and Machine-Learning Method. Remote Sens. 14: 3238.
- 31. Smith V., Portillo-Quintero C., Sanchez-Azofeifa A., Hernandez-Stefanoni J.L. 2019. Assessing the accuracy of detected breaks in Landsat time series as predictors of small scale deforestation in tropical dry forests of Mexico and Costa Rica. Remote Sens. Environ. 221: 707–721.
- 32. Soulard C.E., Albano C.M., Villarreal M.L., Walker J.J. 2016. Continuous 1985-2012 Landsat monitoring to assess fire effects on meadows in Yosemite National Park, California. Remote Sens. 8: 1–16.
- 33. Tao C., Guo T., Shen M., Tang Y. 2023. Spatiotemporal dynamic of disturbances in planted and natural forests for the Saihanba Region of China. Remote Sens. 15.
- 34. Toker M., Çolak E., Sunar F. 2021. Spatiotemporal change analysis of the protected areas: A case study - Ä°ä neada floodplain forests. In: International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives. International Society for Photogrammetry and Remote Sensing, p 735–740.
- 35. Turner M.G., Simard M. 2017. Using spatial statistics and landscape metrics to compare disturbance mosaics. In: Gergel SE, Turner MG, editors. A Practical Guide to Concepts and Techniques. Learning Landscape Ecology. New York (US): Springer, p 175–190.
- 36. Umarhadi D.A., Wardhana W., Senawi Soraya E. 2023. Monitoring forest gain and loss based on LandTrendr algorithm and Landsat images in KTH Pati social forestry area, Indonesia. J. Appl. Nat. Sci. 15: 1051 – 1060.
- 37. Verbesselt J., Hyndman R., Newnham G., Culvenor D. 2010. Detecting trend and seasonal changes in satellite image time series. Remote Sens. Environ.
- 38. Wang W., Zhu L., Li L., Xue X., Feng Y., Xing H. 2023. A LandTrendr Algorithm– based study of forest disturbance from 2000 to 2020 in Jilin Province, China. Polish J. Environ. Stud. 32: 309 – 319.
- 39. Xiao W., Deng X., He T., Chen W. 2020. Mapping annual land disturbance and reclamation in a surface coal mining region using google earth engine and the landtrendr algorithm: A case study of the shengli coalfield in Inner Mongolia, China. Remote Sens. 12.
- 40. Zhang S., Yu J., Xu H., Qi S., Luo J., Huang S., Liao K., Huang M. 2023. Mapping the age of subtropical secondary forest using dense landsat time series data: An ensemble model. Remote Sens. 15.
- 41. Zhu Z., Woodcock C.E. 2014. Continuous change detection and classification of land cover using all available Landsat data. Remote Sens. Environ. 144: 152–171.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-abfa08a0-1302-4d9d-ae8e-9da593c118ff