Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In the current era marked by increased consumer awareness and advancements in food technology, the quality of turkey meat has emerged as a focal point, particularly in promoting healthy diets for children and adolescents. As parents seek nutritious and appealing food options for younger consumers, understanding protein denaturation becomes critical for enhancing meat texture, juiciness, and overall sensory experience. This study explores the application of Computational Fluid Dynamics to predict and optimize the denaturation of turkey meat proteins during thermal processing. By utilizing CFD, this research models heat and mass transfer dynamics involved in cooking turkey meat, providing insights that can optimize cooking conditions to preserve nutritional value while improving sensory qualities. The results indicated optimal thermal treatment conditions—161.28°C, 60.31% air humidity, and 17.58 rpm fan speed. Laboratory validations confirmed that the predicted denaturation of myosin and actin aligned closely with experimental results, underscoring the efficacy of CFD as a predictive tool. However, a notable discrepancy was observed in collagen denaturation, suggesting areas for further refinement in modeling. Overall, this work illustrates the potential of CFD in food science, enabling the development of high-quality, safe, and sustainable turkey meat products that fulfill the nutritional needs of children and adolescents.
Czasopismo
Rocznik
Tom
Strony
37--51
Opis fizyczny
Bibliogr. 32 poz., fig., tab.
Twórcy
autor
- Warsaw University of Life Sciences – SGGW
autor
- Warsaw University of Life Sciences – SGGW
autor
- Warsaw University of Life Sciences – SGGW
autor
- Warsaw University of Life Sciences – SGGW
- Warsaw University of Life Sciences – SGGW
autor
- Warsaw University of Life Sciences – SGGW
Bibliografia
- 1] Chauhan A., Kaur H., Yadav S., Jakhar S.K. 2020. A Hybrid Model for Investigating and Selecting a Sustainable Supply Chain for Agri-Produce in India. Annals of Operations Research 290: 621–642. https://www.doi.org/10.1007/s10479-019-03190-6
- [2] Liu Y., Wang Z., Zhang D., Pan T., Liu H., Shen Q., Hui T. 2022. Effect of Protein Thermal Denaturation on the Texture Profile Evolution of Beijing Roast Duck. Foods 11: 1–14. https://www.doi.org/10.3390/foods11050664
- [3] Khalid W., Maggiolino A., Kour J., Arshad M.S., Aslam N., Afzal M.F., Meghwar P., Zafar K.U.W., De Palo P., Korma S.A. 2023. Dynamic Alterations in Protein, Sensory, Chemical, and Oxidative Properties Occurring in Meat during Thermal and Non-Thermal Processing Techniques: A Comprehensive Review. Frontiers in Nutrition 9: 1–19. https://www.doi.org/10.3389/fnut.2022.1057457
- [4] Szpicer A., Bińkowska W., Stelmasiak A., Zalewska M., Wojtasik-Kalinowska I., Piwowarski K., Półtorak A. 2024.Innovative Implementation of Computational Fluid Dynamics in Proteins Denaturation Process Prediction in Goose Breast Meat and Heat Treatment Processes Optimization. Applied Sciences 14: 1–22. https://www.doi.org/0.3390/app14135567
- [5] De Albuquerque C.D., Curet S., Boillereaux L. 2019. A 3D-CFD-Heat-Transfer-Based Model for the Microbial Inactivation of Pasteurized Food Products. Innovative Food Science & Emerging Technologies 54: 172–181. https://www.doi.org/10.1016/j.ifset.2019.04.007
- [6] Norton T., Sun D.W. 2006. Computational Fluid Dynamics (CFD) – an Effective and Efficient Design and Analysis Tool for the Food Industry: A Review. Trends in Food Science & Technology 17: 600–620. https://www.doi.org/10.1016/j.tifs.2006.05.004
- [7] James C., Vincent C., de Andrade Lima T.I., James S.J. 2006. The Primary Chilling of Poultry Carcasses. A Review. International Journal of Refrigeration 29: 847–862. https://www.doi.org/10.1016/j.ijrefrig.2005.08.003
- [8] Park H.W., Yoon W.B. 2018. Computational Fluid Dynamics (CFD) Modelling and Application for Sterilization of Foods: A Review. Processes 6: 1–14. https://www.doi.org/10.3390/pr6060062
- [9] Szpicer A., Binkowska W., Stelmasiak A., Wojtasik-Kalinowska I., Wierzbicka A., Poltorak A. 2023. Application of Computational Fluid Dynamics Simulation in Predicting Food Protein Denaturation : Numerical Studies on Selected Food Products. A Review. Animal Science Papers and Reports 41: 307–332. https://www.doi.org/10.2478/aspr-2023-0014.
- [10] Szpicer A., Binkowska W., Wojtasik-Kalinowska I., Półtorak A. 2023. Prediction of Protein Denaturation and Weight Loss in Pork Loin (Muscle Longissimus Dorsi) Using Computational Fluid Dynamics. European Food Research and Technology 249: 3055–3068. https://www.doi.org/10.1007/s00217-023-04348-0
- [11] Szpicer A., Wierzbicka A., Półtorak A. 2022. Optimization of Beef Heat Treatment Using CFD Simulation: Modeling of Protein Denaturation Degree. Journal of Food Process Engineering45: e14014. https://www.doi.org/10.1111/jfpe.14014
- [12] Zielbauer B.I., Franz J., Viezens B., Vilgis T.A. 2016. Physical Aspects of Meat Cooking: Time Dependent Thermal Protein Denaturation and Water Loss. Food Biophysics 11: 34–42. https://www.doi.org/10.1007/s11483-015-9410-7
- [13] Hassoun A., Aït-Kaddour A., Sahar A., Cozzolino D. 2021. Monitoring Thermal Treatments Applied to Meat Using Traditional Methods and Spectroscopic Techniques: A Review of Advances over the Last Decade. Food and Bioprocess Technology 14: 195–208. https://www.doi.org/10.1007/s11947-020-02510-0
- [14] Latorre M.E., Palacio M.I., Velázquez D.E., Purslow P.P. 2019. Specific Effects on Strength and Heat Stability of Intramuscular Connective Tissue during Long Time Low Temperature Cooking. Meat Science 153: 109–116. https:// www.doi.org/10.1016/j.meatsci.2019.03.016.
- [15] Agafonkina I.V., Korolev I.A., Sarantsev T.A. 2019. The Study of Thermal Denaturation of Beef, Pork, Chicken and Turkey Muscle Proteins Using Differential Scanning Calorimetry. Theory and Practice of Meat Processing 4: 19–23. https://www.doi.org/10.21323/2414-438x-2019-4-3-19-23.
- [16] Choi Y., Okos M.R. 1986. Thermal Properties of Liquid Foods – Review. American Society of Association Executives. 35–77.
- [17] Gantner M., Guzek D., Najda A., Brodowska M., Górska-Horczyczak E., Wojtasik-Kalinowska, I., Godziszewska J. 2017. Oxidative and Microbial Stability of Poultry Meatballs Added with Coriander Extracts and Packed in Cold Modified Atmosphere. International Journal of Food Properties 20: 2527–2537. https://www.doi.org/10.1080/10942912.2016.1243125
- [18] Szpicer A., Binkowska W., Wojtasik-Kalinowska I., Stelmasiak A., Poltorak A. 2024. Hybrid Method for Predicting Protein Denaturation and Docosahexaenoic Acid Decomposition in Atlantic Salmon (Salmo Salar L.) Using Computational Fluid Dynamics and Response Surface Methodology. European Food Research and Technology 250, 4: 1–14. https://www.doi.org/10.1007/s00217-023-04453-0
- [19] Srikiatden J., Roberts J.S. 2007. Moisture Transfer in Solid Food Materials: A Review of Mechanisms, Models, and Measurements. International Journal of Food Properties 10: 739–777. https://www.doi.org/10.1080/10942910601161672
- [20] Singh R.P., Heldman D.R. 2014. Introduction to Food Engineering: Fifth Edition. Elsevier, London.
- [21] Markočič E., Knez Ž. 2016. Redlich-Kwong Equation of State for Modelling the Solubility of Methane in Water over a Wide Range of Pressures and Temperatures. Fluid Phase Equilibria 408 108–114. https://www.doi.org/10.1016/j.fluid.2015.08.021
- [22] Stelmasiak A., Wyrwisz J., Wierzbicka A. 2019. Effect of Packaging Methods on Salt-Reduced Smoked-Steamed Ham Using Herbal Extracts. CyTA – Journal of Food 17: 834–840. https://www.doi.org/10.1080/19476337.2019.1660409
- [23] Gál R., Kameník J., Salek R.N., Polášek Z., Macharáčková B., Valenta T., Haruštiaková D., Vinter Š. 2022.Research Note: Impact of Applied Thermal Treatment on Textural, and Sensory Properties and Cooking Loss of Selected Chicken and Turkey Cuts as Affected by Cooking Technique. Poultry Science 101: 1–6. https://www.doi.org/10.1016/j.psj.2022.101923
- [24] Zhang Y., Dong L., Zhang J., Shi J., Wang Y., Wang S. 2021. Adverse Effects of Thermal Food Processing on the Structural, Nutritional, and Biological Properties of Proteins. Annual Review of Food Science and Technology 12: 259–286. https://www.doi.org/10.1146/annurev-food-062320-012215
- [25] Desmond E. 2006. Reducing Salt: A Challenge for the Meat Industry. Meat Science 74: 188–196. https://www.doi.org/10.1016/j.meatsci.2006.04.014
- [26] Kim Y.H.B., Warner R.D., Rosenvold K. 2014. Influence of High Pre-Rigor Temperature and Fast PH Fall on Muscle Proteins and Meat Quality: A Review. Animal Production Science 54: 375–395. https://www.doi.org/10.1071/AN13329
- [27] Abraha B., Admassu H., Mahmud A., Tsighe N., Shui X.W., Fang Y. 2018. Effect of Processing Methods on Nutritional and Physico-Chemical Composition of Fish: A Review. MOJ Food Processing & Technology6: 376–382. https://www.doi.org/10.15406/mojfpt.2018.06.00191
- [28] Yesiltas B., García-Moreno P.J., Sørensen A.D.M., Akoh C.C., Jacobsen C. 2019. Physical and Oxidative Stability of High Fat Fish Oil-in-Water Emulsions Stabilized with Sodium Caseinate and Phosphatidylcholine as Emulsifiers. Food Chemistry 276: 110–118. https://www.doi.org/10.1016/j.foodchem.2018.09.172
- [29] Tornberg E. 2005. Effects of Heat on Meat Proteins – Implications on Structure and Quality of Meat Products. Meat Scince 70: 493–508. https://www.doi.org/10.1016/j.meatsci.2004.11.021
- [30] Murphy R.Y., Johnson E.R., Duncan L.K., Clausen E.C., Davis M.D., March J.A. 2001. Heat Transfer Properties, Moisture Loss, Product Yield, and Soluble Proteins in Chicken Breast Patties during Air Convection Cooking. Poultry Science 80: 508–514. https://www.doi.org/10.1093/ps/80.4.508
- [31] Suleman R., Wang Z., Aadil R.M., Hui T., Hopkins D.L., Zhang D. 2020. Effect of Cooking on the Nutritive Quality, Sensory Properties and Safety of Lamb Meat: Current Challenges and Future Prospects. Meat Science 167: 108172. https://www.doi.org/10.1016/j.meatsci.2020.108172
- [32] Bıyıklı M., Akoğlu A., Kurhan Ş., Akoğlu İ.T. 2020. Effect of Different Sous Vide Cooking Temperature-Time Combinations on the Physicochemical, Microbiological, and Sensory Properties of Turkey Cutlet. International Journal of Gastronomy and Food Science 20: 100204. https://www.doi.org/10.1016/j.ijgfs.2020.100204
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-abf416ee-9b48-44b2-8233-d559abc9e6c1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.