PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Damped Zero-Pseudorandom Noise OFDM Systems

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper proposed a new OFDM scheme called damped zero-pseudorandom noise orthogonal frequency division multiplexing (DZPN-OFDM) scheme. In the proposed scheme, ZPN-OFDM non-zero part is damped to reduce its energy, thus the mutual interference power in-between the data and training blocks with conservative the pseudo-noise conventional properties required for channel estimation or synchronization. The motivation of this paper is the OFDM long guard interval working in wide dispersion channels, whereas a significant energy is wasted when the conventional ZPN-OFDM is used as well as the BER performance is also degraded. Moreover, the proposed scheme doesn’t duplicate the guard interval to solve the ZPN-OFDM spectrum efficiency loss problem. Both detailed performance analysis and simulation results show that the proposed DZPNOFDM scheme can, indeed, offer significant bit error rate, spectrum efficiency and energy efficiency improvement.
Rocznik
Strony
433--438
Opis fizyczny
Bibliogr. 22 poz., rys., tab., wykr.
Twórcy
autor
  • Electrical Engineering Department, Aswan Faculty of Engineering, Aswan University, Aswan, Egypt
Bibliografia
  • [1] D. Van Welden, H. Steendam, and M. Moeneclaey, "Iterative Decision-Directed Joint Frequency Offset and Channel Estimation for KSP-OFDM," IEEE Transactions on Communications, vol. 60, pp. 3103-3110, 2012.
  • [2] D. Van Welden and H. Steendam, "Near Optimal Iterative Channel Estimation for KSP-OFDM," IEEE Transactions on Signal Processing, vol. 58, pp. 4948-4954, 2010.
  • [3] T. van Waterschoot, V. Le Nir, J. Duplicy, and M. Moonen, "Analytical Expressions for the Power Spectral Density of CP-OFDM and ZP-OFDM Signals," IEEE Signal Processing Letters, vol. 17, pp. 371-374, 2010.
  • [4] B. Muquet, W. Zhengdao, G. B. Giannakis, M. de Courville, and P. Duhamel, "Cyclic prefixing or zero padding for wireless multicarrier transmissions," IEEE Transactions on Communications, vol. 50, pp. 2136-2148, 2002.
  • [5] Z. Liu and T. C. Yang, "On Overhead Reduction in Time-Reversed OFDM Underwater Acoustic Communications," IEEE Journal of Oceanic Engineering, vol. PP, pp. 1-13, 2013.
  • [6] M. Stojanovic, "Low complexity OFDM detector for underwater acoustic channels," in OCEANS, 2006, pp. 1-6.
  • [7] B. Li, S. Zhou, M. Stojanovic, and L. Freitag, "Pilot-tone based ZP-OFDM demodulation for an underwater acoustic channel," in OCEANS, 2006, pp. 1-5.
  • [8] L. Baosheng, Z. Shengli, M. Stojanovic, L. Freitag, and P. Willett, "Multicarrier Communication Over Underwater Acoustic Channels With Nonuniform Doppler Shifts," IEEE Journal of Oceanic Engineering, vol. 33, pp. 198-209, 2008.
  • [9] H. Esmaiel and D. Jiang, "Zero-pseudorandom noise training OFDM," Electronics Letters, vol. 50, pp. 650-652, 2014.
  • [10] H. Esmaiel and D. Jiang, "Review Article: Multicarrier Communication for Underwater Acoustic Channel," International Journal of Communications, Network and System Sciences, vol. 6, pp. 361-376, 2013.
  • [11] H. A. H. Esmaiel, "Advanced multi-band modulation technology for underwater communication systems," University of Tasmania, 2015.
  • [12] L. Zhiqiang and T. C. Yang, "On the Design of Cyclic Prefix Length for Time-Reversed OFDM," IEEE Transactions on Wireless Communications, vol. 11, pp. 3723-3733, 2012.
  • [13] L. Deneire, B. Gyselinckx, and M. Engels, "Training sequence versus cyclic prefix-a new look on single carrier communication," IEEE Communications Letters, vol. 5, pp. 292-294, 2001.
  • [14] L. Dai, J. Wang, Z. Wang, P. Tsiaflakis, and M. Moonen, "Spectrum- and Energy-Efficient OFDM Based on Simultaneous Multi-Channel Reconstruction," IEEE Transactions on Signal Processing, vol. PP, pp. 1-13, 2013.
  • [15] W. Jun, Y. Zhi-Xing, P. Chang-Yong, S. Jian, and Y. Lin, "Iterative padding subtraction of the PN sequence for the TDS-OFDM over broadcast channels," IEEE Transactions on Consumer Electronics, vol. 51, pp. 1148-1152, 2005.
  • [16] F. Jian, W. Jun, S. Jian, P. Chang-Yong, and Y. Zhi-Xing, "A Simplified Equalization Method for Dual PN-Sequence Padding TDS-OFDM Systems," IEEE Transactions on Broadcasting, vol. 54, pp. 825-830, 2008.
  • [17] H. Esmaiel and D. Jiang, "Time reversal time-domain synchronisation orthogonal frequency division multiplexing over multipath fading channels with significant tap delays," The Journal of Engineering, vol. 1, 2014.
  • [18] D. Linglong, W. Jintao, W. Zhaocheng, P. Tsiaflakis, and M. Moonen, "Spectrum- and Energy-Efficient OFDM Based on Simultaneous Multi-Channel Reconstruction," IEEE Transactions on Signal Processing, vol. 61, pp. 6047-6059, 2013.
  • [19] D. L. Donoho, "Compressed sensing," IEEE Transactions on Information Theory, vol. 52, pp. 1289-1306, 2006.
  • [20] M. F. Duarte and Y. C. Eldar, "Structured Compressed Sensing: From Theory to Applications," IEEE Transactions on Signal Processing, vol. 59, pp. 4053-4085, 2011.
  • [21] T. C. Yang, "Temporal resolutions of time-reversal and passive-phase conjugation for underwater acoustic communications," IEEE Journal of Oceanic Engineering, vol. 28, pp. 229-245, 2003.
  • [22] J. A. Tropp, A. C. Gilbert, and M. J. Strauss, "Algorithms for simultaneous sparse approximation. Part I: Greedy pursuit," Signal Processing, vol. 86, pp. 572-588, 2006.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-abf373b6-001c-4ed6-89d0-52e7ee434695
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.