PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Carbonization of biomass – an efficient tool to decrease the emission of CO2

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents the results and analysis of biomass processing in order to provide the conditions for the most profitable use of the biomass in modern and efficient power generation systems with particular attention put on the decrease of the emission of carbon dioxide (CO2) and no need to develop carbon capture and storage plants. The promising concept of CO2 storage via the production of biochar and the advantages of its application as a promising carbon sink is also presented and the results are supported by authors’ own experimental data. The idea enables the production of electricity, as well as (optionally) heat and cold from the thermal treatment of biomass with simultaneous storage of the CO2 in a stable and environmentally-friendly way. The key part of the process is run in a specially-designed reactor where the biomass is heated up in the absence of oxygen. The evolved volatile matter is used to produce heat/cold and electricity while the remaining solid product (almost completely dry residue) is sequestrated in soil. The results indicate that in order to reduce the emission of CO2 the biomass should rather be 'cut and char' than just 'cut and burn', particularly that the charred biomass may also become a significant source of nutrients for the plants after sequestration in soil.
Słowa kluczowe
Rocznik
Strony
185--195
Opis fizyczny
Bibliogr. 32 poz., il.
Twórcy
  • Czestochowa University of Technology, Department of Energy Engineering, Brzeznicka 60a, 42-200 Częstochowa, Poland
  • Czestochowa University of Technology, Department of Energy Engineering, Brzeznicka 60a, 42-200 Częstochowa, Poland
autor
  • Czestochowa University of Technology, Department of Energy Engineering, Brzeznicka 60a, 42-200 Częstochowa, Poland
Bibliografia
  • [1] Baxter L.: Biomass-coal co-combustion: opportunity for affordable renewable energy. Fuel 84(2005), 1295-1302.
  • [2] McKendry P.: Energy production from biomass (Part 1): Overview of biomass. Bioresource Technol. 83(2002), 37-46.
  • [3] McKendry P.: Energy production from biomass (Part 2): Conversion technologies. Bioresource Technol. 83(2002), 47-54.
  • [4] McKendry P.: Energy production from biomass (Part 3): Gasification technologies. Bioresource Technol. 83(2002), 55-63.
  • [5] Hilber Th., Martensen M., Maier J., Scheffknecht G.: A method to characterise the volatile release of solid recovered fuels (SRF). Fuel 86(2007), 303-308.
  • [6] Zevenhoven R., Axelsen E.P., Hupa M.: Pyrolysis of waste-derived fuel mixtures containing PVC. Fuel 81(2002), 507-510.
  • [7] Raveendran K., Ganesh A.: Heating value of biomass and biomass pyrolysis products. Fuel 75(1996), 15, 1715-1720.
  • [8] Demirbas A.: Effect of initial moisture content on the yields of oily products from pyrolysis of biomass. J. Anal. Appl. Pyrol. 71(2004), 803-815.
  • [9] Onay O., Mete Kockar O.: Slow, fast and flash pyrolysis of rapeseed. Renew. Energy 28(2003), 2417-2433.
  • [10] Varhegyi G., Antal M., Jr.: Charcoal, carbons and charcoal-type fuels from biomass wastes. Ecol. Chem. Eng. 9(2002), 1, 21-31.
  • [11] Prins M., Ptasinski K., Janssen F.: Torrefaction of wood: Part 1. Weight losskinetics. J. Anal. Appl. Pyrol. 77(2006), 28-34.
  • [12] Prins M., Ptasinski K., Janssen F.: Torrefaction of wood: Part 2. Analysis of products. J. Anal. Appl. Pyrol. 77(2006), 35-40.
  • [13] Prins M., Ptasinski K., Janssen F.: More efficient biomass gasification via torrefaction. Energy 31(2006), 3458-3470.
  • [14] Prins M., Ptasinski K., Janssen F.: From coal to biomass gasification: Comparison of thermodynamic efficiency. Energy 32(2007), 1248-1259.
  • [15] Yoder J., Galinato S., Granatstein D., Garcia-Perez M.: Economic tradeoff between biochar and bio-oil production via pyrolysis. Biomass Bioenergy 35(2011), 1851-1862.
  • [16] Lehmann J., Rillig M., Thies J., Masiello C., Hockaday W., Crowley D.: Biochar effects on soil biota - A review, Soil Biol. Biochem. 43(2011), 1812-1836.
  • [17] Chew J., Doshi V.: Recent advances in biomass pretreatment - Torrefaction fundamentals and technology. Renew. Sust. Energy Rev. 15(2011), 4212-4222.
  • [18] Neves D., Thunman H., Matos A., Tarelho L., Gomez-Barea A.: Characterization and prediction of biomass pyrolysis products. Prog. Energy Comb. Sci. 37(2011), 611-630.
  • [19] Mann M., Spath P.: A life cycle assessment of biomass cofiring in a coal-fired power plant. Clean Prod. Process. 3(2001), 81-91.
  • [20] Bolan N., Kunhikrishnan A., Choppala G., Thangarajan R., Chung J.: Stabilization of carbon in compost and biochars in relation to carbon sequestration and soil fertility. Sci. Total Environ. 424(2012), 264-270.
  • [21] Sevilla M., Marcia-Agullo J., Fuertes A.: Hydrothermal carbonization of biomass as a route for the sequestration of CO2: Chemical and structural properties of the carbonized products. Biomass Bioenergy 35(2011), 3152-3159.
  • [22] Kobyłecki R., Bis Z., Borecki R.: Poligeneracja dla szklarni. Rynek Gazu (2012), 151-160 (in Polish).
  • [23] Kacprzak A., Kobyłecki R., Bis Z.: Clean energy from a carbon fuel cell. Arch. Thermodyn. 32(2011), 3,145-157.
  • [24] Kobyłecki R., Bis Z.: Autotermiczna termoliza jako efektywna technologia produkcji czystych i wysokoenergetycznych paliw. Arch. Spalania 6(2006), 1-4, 114-119 (in Polish).
  • [25] Kacprzak A., Kobyłecki R., Bis Z.: Influence of temperature and composition of NaOH-KOH and NaOH-LiOH electrolytes on the performance of a direct carbon fuel cell. J. Power Sour. 239(2013), 409-414, DOI: 10.1016/j.jpowsour.2013.03.159.
  • [26] Xiu S., Shahbazi A.: Bio-oil production and upgrading research: A review. Renew. Sust. Energy Rev. 16 (2012), 4406-4414.
  • [27] Delrue F., Li-Beisson Y., Setier P.-A., Sahut C., Roubaud A., Froment A.-K., Peltier G.: Comparison of various microalgae liquid biofuel production pathways based on energetic, economic and environmental criteria. Bioresource Technol. 136 (2013), 205-212.
  • [28] Parshetti G., Kent Hoekman G., Balasubramanian R.: Chemical, structural and combustion characteristics of carbonaceous products obtained by hydrothermal carbonization of palm empty fruit bunches. Bioresource Technol. 135 (2013), 683-689.
  • [29] Kruse A., FunkeA., Titirici M.-M.: Hydrothermal conversion of biomass to fuels and energetic materials. Curr. Opin. Chem. Biol. 17(2013), 515-521.
  • [30] Akhtar J., Amin N.: A review on operating parameters for optimum liquid oil yield in biomass pyrolysis. Renew. Sust. Energy Rev. 16(2012), 5101-5109.
  • [31] Goyal H.B., Seal D., Saxena R.C.: Bio-fuels from thermochemical conversion of renewable resources: A review. Renew. Sust. Energy Revi. 12 (2008), 504-517.
  • [32] Lehmann J., Joseph S. (Eds.): Biochar for Environmental Management. Earthscan, 2009.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-abf08305-da93-4663-8c0d-d3362f13d033
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.