Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This article examines the problem of estimating the states of Markovian jumping competitive neural networks, where the estimation is done using stochastic sampled-data control with time-varying delay. Instead of continuously measuring the states, the network relies on sampled measurements, and a sampled-data estimator is proposed. The estimator uses probabilistic sampling during two sampling periods, following a Bernoulli distribution. The article also takes into account the possibility of actuator failure in real systems. To ensure the exponentially mean-square stability of the delayed neural networks, the article constructs a Lyapunov-Krasovskii functional (LKF) that includes information about the bounds of the delay. The sufficient conditions for stability are derived in the form of linear matrix inequalities (LMIs) by employing modified free matrix-based integral inequalities. Finally, a numerical example is provided to demonstrate the effectiveness of the proposed method.
Wydawca
Rocznik
Tom
Strony
373--385
Opis fizyczny
Bibliogr. 18 poz., rys.
Twórcy
autor
- School of Cyber Science and Engineering, Southeast University, Nanjing 211189, China
- Department of Mathematics, School of Advanced Sciences, Vellore Institute of Technology, Vellore-632 014, Tamilnadu, India
autor
- Department of Mathematics, School of Advanced Sciences, Vellore Institute of Technology, Vellore-632 014, Tamilnadu, India
autor
- Department of Mathematics, School of Advanced Sciences, Vellore Institute of Technology, Vellore-632 014, Tamilnadu, India
autor
- Institute of Information Technologies, University of Social Sciences, ul. Sienkiewicza 9, 90-113 Łodź, Poland
Bibliografia
- [1] J. Zhang, H. Dong, J. Gao, R. Yao, G. Li, H. Wu, Self-organized operational neural networks for the detection of atrial fibrillation, Journal of Artificial Intelligence and Soft Computing Research, 14 (2023) 63–75.
- [2] T. Niksa-Rynkiewicz, P. Stomma, A. Witkowska, D. Rutkowska, A. Słowik, K. Cpałka, J. Jaworek-Korjakowska, P. Kolendo, An intelligent approach to short-T term wind power prediction using deep neural networks, Journal of Artificial Intelligence and Soft Computing Research, 13 (2023) 197–210
- [3] W. Yang, Y. W. Wang, I. C. Morarescu, X. K. Liu, Y. Huang, Fixed-time synchronization of competitive neural networks with multiple time scales, IEEE Transactions on Neural Networks and Learning Systems, 33 (2021) 4133–4138.
- [4] Y. Zhao, S. Ren, J. Kurths, Synchronization of coupled memristive competitive BAM neural networks with different time scales, Neurocomputing, 427 (2021) 110–117.
- [5] M.S. Ali, M. Hymavathi, B. Priya, S. A. Kauser, G.K. Thakur, Stability analysis of stochastic fractional-order competitive neural networks with leakage delay, AIMS Mathematics, 6 (2021) 3205–3241.
- [6] L. Wang, C. K. Zhang, Exponential synchronization of memristor-based competitive neural networks with reaction-diffusions and infinite distributed delays, IEEE Transactions on Neural Networks and Learning Systems, DOI: 10.1109/TNNLS.2022.3176887.
- [7] H. Liu, W. Qian, Y. Zhao, New optimization approach of state estimation for neural networks with mixed delays, Circuits, Systems, and Signal Processing, 41 (2022) 3777–3797.
- [8] M. Zhang, X. Yang, Q. Qi, J. H. Park, State estimation of switched time-delay complex networks with strict decreasing LKF, IEEE Transactions on Neural Networks and Learning Systems, DOI: 10.1109/TNNLS.2023.3241955.
- [9] R. Zhu, Y. Guo, F. Wang, Quasi-synchronization of heterogeneous neural networks with distributed and proportional delays via impulsive control, Chaos, Solitons and Fractals, 141 (2020) 110322.
- [10] Y. Li, Z. Yu, Y. Liu, J. Ren, Stochastic stabilization for discrete-time Markovian jump systems With time-varying delay and two Markov chains under partly known transition probabilities, IEEE Access, 9 (2021) 26937–26947.
- [11] C. D. Zheng, S. Liu, H. Meng, Event-triggered synchronization for semi-Markov jump complex dynamic networks with time-varying delay, Neuro-computing, 458 (2021) 390–402.
- [12] Y. Chen, J. Ren, X. Zhao, A. Xue, State estimation of Markov jump neural networks with random delays by redundant channels, Neurocomputing, 453 (2021) 493–501
- [13] L. Yao, Z. Wang, X. Huang, Y. Li, Q. Ma, H. Shen, Stochastic sampled-data exponential synchronization of Markovian jump neural networks with time-varying delays, IEEE Transactions on Neural Networks and Learning Systems, 34 (2021) 909–920.
- [14] J. Tian, J. Zhang, Y. Liu, C. Ge, C. Hua, Synchronization of delayed neural networks with actuator failure based on stochastic sampled-data controller, IEEE Access, 8 (2020) 200923–200931.
- [15] G. Zhang, J. Zhang, W. Li, C. Ge, Y. Liu, Exponential synchronization of delayed neural networks with actuator failure using stochastic sampled-data control, International Journal of Control, Automation and Systems, 20 (2022) 691–701.
- [16] Q. Zeng, M. Jiang, J. Hu, Free-matrix-based integral inequalities for sampled-data synchronization control of delayed complex networks, SN Applied Sciences, 5 (2023) 301.
- [17] C. Ge, Y. Shi, J.H. Park, C. Hua, State estimate for fuzzy neural networks with random uncertainties based on sampled-data control, Journal of the Franklin Institute, 357 (2020) 635–650.
- [18] L. Yao, Z. Wang, X. Huang, Y. Li, Q. Ma, H. Shen, Stochastic sampled-data exponential synchronization of Markovian jump neural networks with time-varying delays, IEEE Transactions on Neural Networks and Learning Systems, 34 (2021) 909–920.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-abee48ae-c89c-4844-8fce-23b94f14c4bc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.