PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Building heating source choice using exergoeconomic approach

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Energy saving is the one of the most promising direction of state policy development, that can provide the solution of a number of economical and ecological problems as well as sustainable development conditions. Residential and municipal sector consumes a large part of energy around the world in general and specifically in Ukraine (about 33%) [1]. Major part of fuel and energy resources consumption is accounted for natural gas - 57.61% and thermal energy - 19.12% [1]. Since Ukraine is the importer of natural gas, the improvement of the energy efficiency is the promising direction of residential and municipal sector development. The principle of decentralization on the basis of distributed generation [2] is ultimate for the development of residential and municipal sector heat supply system [3]. In this context the heat source selection is important as well as consideration of building along with heat source. As regards building as the energy system [4, 5], which includes heat source, exergy analysis has got widespread use in this direction [6-8]. Combination of exergy and ecology enabled the development of the new discipline exergoecology and the exergy flows cost estimate gave rise to exergoeconomics. Special "hybrid procedure" of exergetic processes flow optimization - "thermoeconomics" was developed in the USA by M. Trybus and R. Evans [9]. Exergoeconomics (thermoeconomics) is the unique combination of exergy and cost analyses, where the principle of exergy cost is applied [10]. Basic terms within exergy and exergoeconomy analysis are: fuel exergy, product exergy, destruction of exergy and exergy loss. Definitions, terms and common denominations used within exergy and exergoeconomy analysis are identified in [11]. Exergoeconomics is frequently used for buildings and heat sources in particular for geothermal heat supply system [12], for heating systems [13]. The specific energy cost method SPECO gained widespread application analysis of exergy flows in buildings [14]. The author [15] has placed greater focus on three stages of SPECO method namely: 1) exergy flows assessment, 2) definition of the terms "fuel" and "product", 3) cost balance estimation and additional equations. Exergoeconomic analysis evolution is identical to exergy one and has developed in emergence of modern exergoeconomic analysis (ALEXERGO) [15]. This method was used for assessment of the system with LNG regasification plant and electric generator unit [17] and characteristics estimation of essential heating system components in the building [16] and in other works.
Rocznik
Strony
150--157
Opis fizyczny
Bibliogr. 24 poz., rys., tab., wykr., wzory
Twórcy
autor
  • National Technical University of Ukraine “Igor Sikorsky Kyiv Politechnic Institute”
autor
  • National Technical University of Ukraine “Igor Sikorsky Kyiv Politechnic Institute”
Bibliografia
  • [1] International energy agency, available at: http://www.iea.org/statistics/.
  • [2] Prakhovnik, A. V., Savchenko, A. S. (2010). Terytorialna dekompozytsiia system enerhopostachannia. Enerhetyka: ekonomika, tekhnolohii, ekolohiia, 2, 49-56
  • [3] Fialko, N. M., Tymchenko, M. P. & Khalatov, A. A. et all (2016). Intelektualni enerhetychni systemy teplozabezpechennia budivel. Visnyk Natsionalnoho universytetu "Lvivska politekhnika". Seriia: Teoriia i praktyka budivnytstva, 8, 203-209.
  • [4] Tabunshchikov, Yu.A., Khromets, D.Yu. & Matrosov, Yu.A. (1986). Teplovaya zashchita ograzhdayushchikh konstruktsiy zdaniy i sooruzheniy. Moscow: Stroyizdat. (in Russian).
  • [5] Mkhitaryan, N. M. (2000). Energosberegayushchie tekhnologii v zhilishchnom i grazhdanskom stroitelstve. Kiїv: Naukova dumka. (in Ukrainian).
  • [6] Bi, Y., Wang, X., & Liu, Y. et al. (2009). Comprehensive exergy analysis of a ground-source heat pump system for both building heating and cooling. Applied Energy, 86, 2560-2565.
  • [7] Tolga Balta, M., Kalinci, Y., Hepbasli, А. (2008). Evaluating a low exergy heating system from the power plant through the heat pump to the building envelope. Energy & Buildings, 40, 141-147.
  • [8] Roozbeh Sangi, Dirk Müller. (2016). Exergy-based approaches for performance evaluation of building energy systems. Sustainable Cities and Society, 25, 25-32.
  • [9] Brodyanskiy, V. M., Fratsher, V., Mikhalek, K. (1988). Eksergeticheskiy metod i ego prilozheniya. Moscow: Stroyizdat. (in Russian).
  • [10] Tsatsaronis, G. (2009). Application of thermoeconomics to the design and synthesis of energy plants. Exergy, Energy System Analysis and Optimization-Volume II: Thermoeconomic Analysis Modeling, Simulation and Optimization in Energy Systems, 2, 162.
  • [11] Tsatsaronis, G. (2007). Definitions and nomenclature in exergy analysis and exergoeconomics. Energy, 32, 249-253.
  • [12] Oktay, Z., Dincer, I. (2009). Exergoeconomic analysis of the Gonen geothermal district heating system for building. Energy and Buildings, 41, 154-163.
  • [13] Yucer, C. T., Hepsali, A. (2013). Exergoeconomic analysis of an energy supply chain for space heating in a building. Energy and Buildings, 62, 342-349.
  • [14] Yucer, C. T., Hepsali, A. (2014). Exergoeconomic and enviroeconomic analyses of a building heating system using SPECO and Lowex, 73, 1-6.
  • [15] Tsatsaronis, D (2002). Vzaimodeystvie termodinamiki i ekonomiki dlya minimizatsii stoimosti energopreobrazuyushchey sistemy. Odessa: Studiya “Negotsiant”, 4. (in Russian).
  • [16] Morosuk, T., Tsatsaronis, G. & Boyano, A. et al. (2012). Advanced exergy-based analyses applied to a system including LNG regasification and electricity generation. Energy and enviroment, 3, 1-9.
  • [17] Açıkkalp, E., Yucer, C. & Hepbasli, A. et al. (2014). Advanced low exergoeconomic (ALEXERGO) assesment of a building along with its heating system at various stages. Energy and Buildings, 87, 66-73.
  • [18] Vihuzhynska, S. Yu, Kosoi, B. V. & Tusnolobov. V.K. (1999). Ekonomika suchasnoho vyrobnytstva. Odesa. (in Ukrainian).
  • [19] «Pre-design sheet for an exergy optimised building design. IEA ECBCS Annex 37. Steady state calculations for heating case. Version 2.3»
  • [20] Brodyanskiy, V. M. (1973). Eksergeticheskiy metod termodinamicheskogo analiza. M. «Energiya» (in Russian).
  • [21] Sangri, R., Müller, D. (2016). Exergy based approaches for performance and evaluation of building energy system. Sustainable sities and society, 25, 25-32.
  • [22] Arseniev, V.M. (2009). Teplonasosna tekhnolohiia enerhozberezhennia: navch. posib. Sumy: SumDU. (in Ukrainian).
  • [23] Deshko, V., Buiak, N. (2009). Ekonomichno dotsilnyi teplovyi zakhust budivli z riznymy dzherelamy teploty. Naukovi visti Natsionalnoho tekhnichnoho universutety Ukrainy “ Kyivskyi politechnichnyi instytut”, 3, 14-20.
  • [24] Boguslavskiy, L. D, Livchak, V.P. & Titov, V.I. (1990). Energosberezhenie v sistemakh teplosnabzheniya, ventilyatsii i konditsionirovaniya vozdukha: Sprav. posobie. Moscow: Stroyizdat. (in Russian).
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-abea1309-591c-4981-b2c3-ef2fd9516cc0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.