Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Fluorescence in situ hybridization was applied to investigate the community structure of polyphosphate accumulating organisms (PAOs) in activated sludge of four full-scale wastewater treatment plants (WWTPs) with different configurations of bioreactors and wastewater composition. PAOs constituted 18-36% of the entire bacterial biovolume and they were more abundant in autumn than in spring. More than half of the probe-defined PAOs community were Tetrasphaera, which were particularly abundant in WWTPs with significant contribution of industrial wastewater or sewage from septic tanker trucks. Accumulibacter-PAOs accounted for up to 12% of all bacteria and were more abundant in the WWTP receiving typical domestic wastewater. Halomonas-PAOs did not generally exceed 1% of total biovolume and constituted a minor fraction of the PAOs community in all the tested WWTPs. Significant contribution of industrial wastewater and sewage from septic tanker trucks were the decisive factors in determining the PAOs community structure.
Zbadano strukturę populacji bakterii akumulujących fosfor (PAO) w osadzie czynnym czterech oczyszczalni różniących się układem technicznym i składem dopływających ścieków. Badania prowadzono metodą fluorescencyjnej hybrydyzacji in-situ. Ogólna liczebność PAO w osadzie czynnym była wyższa na jesieni niż na wiosnę i zawierała się w granicach 18-36% ogółu bakterii. Ponad połowa PAO w badanych układach należała do rodzaju Tetrasphaera, które były szczególnie liczne w osadzie czynnym układów z dużym udziałem ścieków dowożonych transportem asenizacyjnym oraz pochodzących z przemysłu spożywczego. Zawartość Accumulibacter nie przekraczała 12%, osiągając najwyższe wartości w oczyszczalni, do której doprowadzano typowe ścieki bytowe. Liczebność Halomonas nie przekraczała na ogół 1% i bakterie te stanowiły mniejszość w populacji PAO we wszystkich badanych układach. Istotnym czynnikiem, wpływającym na strukturę PAO, był rodzaj dopływających ścieków, a w szczególności udział ścieków przemysłowych i dowożonych transportem asenizacyjnym.
Czasopismo
Rocznik
Tom
Strony
99--105
Opis fizyczny
Bibliogr. 27 poz., tab., wykr.
Twórcy
autor
- Faculty of Environmental Engineering, Department of Biology, Warsaw University of Technology, Nowowiejska 20, 00-653 Warsaw, Poland
autor
- Faculty of Environmental Engineering, Department of Biology, Warsaw University of Technology, Nowowiejska 20, 00-653 Warsaw, Poland
Bibliografia
- [1] Oehmen A., Lemos P.C., Carvalho G., Yuan Z., Keller J., Blackall L.L., Reis M.A.M.; Advances in enhanced biological phosphorus removal: From micro to macro scale. Water Research, Vol.41, No.11, 2007; p. 2271-2300
- [2] Muszyński A., Łebkowska M., Tabernacka A., Miłobędzka A.; From macro to lab-scale: Changes in bacterial community led to deterioration of EBPR in lab reactor. Central European Journal of Biology, Vol.8, No.2, 2013; p.130-142
- [3] Lu H., Oehmen A., Virdis B., Keller J., Yuan Z.G.; Obtaining highly enriched cultures of Candidatus Accumulibacter phosphatis through alternating carbon sources. Water Research, Vol.40, No.20, 2006; p. 3838-3848
- [4] Kong Y.H., Nielsen J.L., Nielsen P.H.; Microautoradiographic study of Rhodocyclus-related polyphosphate-accumulating bacteria in full-scale enhanced biological phosphorus removal plants. Applied and Environmental Microbiology, Vol.70, No.9, 2005; p. 5383-5390
- [5] Zilles J.L., Peccia J., Kim M.W., Hung C.H., Noguera D.R.; Involvement of Rhodocyclus-related organisms in phosphorus removal in full-scale wastewater treatment plants. Applied and Environmental Microbiology Vol.68, No.6, 2002; p.2763-2769
- [6] López-Vázquez C.M, Hooijmans C.M., Brdjanovic D., Gijzen H.J., Van Loosdrecht M.C.M.; Factors affecting the microbial populations at full-scale enhanced biological phosphorus removal (EBPR) wastewater treatment plants in The Netherlands. Water Research, Vol.42, No.10-11, 2008; p.2349-2360
- [7] McIlroy S.J., Nittami T., Seviour E.M., Seviour R.J.; Filamentous members of cluster III Defluviicoccus have the in situ phenotype expected of a glycogen accumulating organism in activated sludge. FEMS Microbiology Ecology, Vol.74, No.1, 2010; p.248-256
- [8] Kong Y.H., Nielsen J.L., Nielsen P.H.; Identity and ecophysiology of uncultured actinobacterial polyphosphate-accumulating organisms in full-scale enhanced biological phosphorus removal plants. Applied and Environmental Microbiology, Vol.71, No.7, 2005; p.4076-4085
- [9] Nguyen H.T., Le V.Q., Hansen A.A., Nielsen J.L., Nielsen P.H.; High diversity and abundance of putative polyphosphate-accumulating Tetrasphaera-related bacteria in activated sludge systems. FEMS Microbiology Ecology, Vol.76, No.2, 2011; p.256-267
- [10] Nguyen H.T., Nielsen J.L., Nielsen P.H.; "Candidatus Halomonas phosphatis", a novel polyphosphate-accumulating organism in full-scale enhanced biological phosphorus removal plants. Environmental Microbiology, Vol.14, No.10, 2012; p.2826-2837
- [11] Nielsen P.H., Daims H., Lemmer H.; FISH Handbook for Biological Wastewater Treatment. IWA Publishing, London, 2009
- [12] Loy A., Horn M., Wagner M.; ProbeBase: an online resource for rRNA-targeted oligonucleotide probes. Nucleic Acids Research, Vol.31, No.1, 2003; p.514-516
- [13] Collins T.J.; ImageJ for microscopy. Biotechniques, Vol.43, No.1, 2007; p.25-30
- [14] Mielczarek A.T., Nguyen H.T., Nielsen J.L., Nielsen P.H.; Population dynamics of bacteria involved in enhanced biological phosphorus removal in Danish wastewater treatment plants. Water Research, Vol.47, No.4, 2013; p.1529-1544
- [15] Beer M., Stratton H.M., Griffiths P.C., Seviour R.J.; Which are the polyphosphate accumulating organisms in full-scale activated sludge enhanced biological phosphate removal systems in Australia? Journal of Applied Microbiology, Vol.100, No.2, 2006; p.233-243
- [16] Nielsen P.H., Mielczarek A.T., Kragelund C., Nielsen J.L., Saunders A.M., Kong Y., Hansen A.A., Vollertsen J.; A conceptual ecosystem model of microbial communities in enhanced biological phosphorus removal plants. Water Research, Vol.44, No.17, 2010; p.5070-5088
- [17] Wong M.-T., Mino T., Seviour R.J., Onuki M., Liu W.-T.; In situ identification and characterization of the microbial community structure of full-scale enhanced biological phosphorus removal plants in Japan. Water Research, Vol.39, No.13, 2005; p.2901-2914
- [18] Gu A.Z., Saunders A., Neethling J.B., Stensel H.D., Blackall L.L.; Functionally relevant microorganisms to enhanced biological phosphorus removal performance at full-scale wastewater treatment plants in the United States. Water Environment Research, Vol.80, No.8, 2008; p.688-698
- [19] He S., Gu A.Z., McMahon K.D.; Progress toward understanding the distribution of Accumulibacter among full-scale enhanced biological phosphorus removal systems. Microbial Ecology, Vol.55, No.2, 2008; p.229-236
- [20] Muszyński A., Tabernacka A., Miłobędzka A.; Longterm dynamics of the microbial community in a fullscale wastewater treatment plant. International Biodeterioration & Biodegradation, Vol.100, 2015; p.44-51
- [21] Kristiansen R, Nguyen HT, Saunders AM, Nielsen JL, Wimmer R, Le VQ, McIlroy SJ, Petrovski S, Seviour RJ, Calteau A, Nielsen KL, Nielsen PH.; A metabolic model for members of the genus Tetrasphaera involved in enhanced biological phosphorus removal. ISME Journal, Vol.7, No.3, 2013; p.543-54
- [22] He S., Gall D.L., McMahon K.D., "Candidatus Accumulibacter" population structure in enhanced biological phosphorus removal sludges as revealed by polyphosphate kinase genes. Applied and Environmental Microbiology, Vol.73, No.18, 2007; p.5865-5874
- [23] Muszyński A., Miłobędzka A.; The effects of carbon/phosphorus ratio on polyphosphate- and glycogen-accumulating organisms in aerobic granular sludge. International Journal of Environmental Science and Technology, Vol.12, No.9, 2015; p.3053-3060
- [24] Kong Y.H., Beer M., Rees G.N., Seviour R.; Functional analysis of microbial communities in aerobic-anaerobic sequencing batch reactors fed with different phosphorus/carbon (P/C) ratios. Microbiology, Vol.148, No.8, 2002; p.2299-2307
- [25] de Kreuk M.K., van Loosdrecht M.C.M.; Selection of slow growing organisms as a means for improving aerobic granular sludge stability. Water Science and Technology, Vol.49, No.11-12, 2004; p.9-17
- [26] Barat R., Montoya T., Borrás L., Ferrer J., Seco A.; Interactions between calcium precipitation and the polyphosphate accumulating bacteria metabolism. Water Research, Vol.42, No.13, 2008; p.3415-3424
- [27] Zhou Y., Pijuan M., Zeng R.J., Lu H., Yuan Z.; Could polyphosphate-accumulating organisms (PAOs) be glycogen accumulating organisms (GAOs)? Water Research Vol.42, No.10-11, 2008; p.2361-2368
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-abe04fbd-f5a1-41b7-9eea-8a36149e912a