Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In the present article, magneto-micropolar nanofluid flow with suction or injection in a porous medium over a stretching sheet for the heat and mass transfer is analyzed numerically. Both Hall and ion-slip effects are considered along with variable thermal diffusivity. The governing partial differential equations are transformed to ordinary differential equations using usual similarity transformations. These coupled non-linear differential equations are solved using the shooting method. Effects of prominent parameter on velocities, temperature and concentration are discussed graphically. Numerical values of skin-friction coefficient, local Nusselt number and local Sherwood number are also tabulated and discussed.
Rocznik
Tom
Strony
383--390
Opis fizyczny
Bibliogr. 44 poz., rys., wykr., tab.
Twórcy
autor
- Department of Mathematics, Capital University of Science and Technology, Islamabad, Pakistan
autor
- Department of Mathematics, Capital University of Science and Technology, Islamabad, Pakistan
autor
- Department of Mathematics, Capital University of Science and Technology, Islamabad, Pakistan
Bibliografia
- [1] S.U.S. Choi, “Enhancing thermal conductivity of fluids with nanoparticles”, in Developments and Applications of Non-Newtonian Flows, pp. 99–105, eds. D.A. Siginer and H.P. Wang, ASME, New York, 1995.
- [2] S.M.S. Murshed, K.C. Leong, and C. Yang, “Thermophysical and electrokinetic properties of nanofluids – a critical review”, Appl. Therm. Engr. 28 (17–18), 2109–2125 (2008).
- [3] S. Ozerinc, S. Kakac, and A. Yazicioglu, “Enhanced thermal conductivity of nanofluids: a state-of-the-art review”, Microfluid Nanofluid 8 (2), 145‒170 (2010).
- [4] S.U.S. Choi, “Nanofluids: from vision to reality through research”, J. Heat Transf. 131 (3), 033106–033106‒9 (2009).
- [5] K.V. Wong and O. Leon, “Applications of nanofluids: current and future”, Adv. Mech. Engr. 2010, 1‒11 (2010).
- [6] J. Buongiorno, “Convective transport in nanofluids”, ASME J. Heat Transf. 128 (3), 240‒250 (2006).
- [7] S. Das, S. Chakraborty, R.N. Jana, and O.D. Makinde, “Entropy analysis of unsteady magneto-nanofluid flow past accelerating stretching sheet with convective boundary condition”, J. Appl. Math. Mech. 36 (12), 1593–1610 (2015).
- [8] S.A. Shehzad, F.M. Abbasi, T. Hayat, and B. Ahmad, “Doubly stratified mixed convection flow of Maxwell nanofluid with heat generation/absorption”, J. Magn. Magn. Mater. 404, 159–165 (2016).
- [9] C.A. Reddy and B. Shankar, “Magneto hydrodynamics stagnation point flow of a nanofluid over an exponentially stretching sheet with an effect of chemical reaction, heat source and suction/injunction”, World J. Mech. 5 (11), 211–221 (2015).
- [10] S. Mansur, A. Ishak, and I. Pop, “Magnetohydrodynamic stagnation point flow of a nanofluid over a stretching/shrinking sheet with suction”, PLOS ONE 10 (3), e0117733 (2015).
- [11] R. Patel, “Effective viscosity of magnetic nanofluids through capillaries”, Phys. Rev. E 85 (2), 026316 (2012).
- [12] D. Yadav and J. Lee, “The onset of MHD nanofluid convection with Hall current effect”, EPJ Plus 130 (8), Art. No. 162 (2015).
- [13] M. Sheikholeslami, H.R. Ashorynejad, and P. Rana, “Lattice Boltzmann simulation of nanofluid heat transfer enhancement and entropy generation”, J. Mol. Liq. 214, 86‒95 (2016).
- [14] M. Sheikholeslami, S. Soleimani, and D.D. Ganji, “Effect of electric field on hydrothermal behavior of nanofluid in a complex geometry”, J. Mol. Liq. 213, 153‒161 (2016).
- [15] M. Sheikholeslami, M.M. Rashidi, T. Hayat, and D.D. Ganji, “Free convection of magnetic nanofluid considering MFD viscosity effect”, J. Mol. Liq. 218, 393‒399 (2016).
- [16] E. Sadeghinezhad, M. Mehrali, R. Saidur, M. Mehrali, S.T. Latibari, A.R. Akhiani, and H.S.C. Metselaar, “A comprehensive review on graphene nanofluids: recent research, development and applications”, Energy Con. Mang. 111, 466‒487 (2016).
- [17] S. Kakac and A. Pramuanjaroenkij, “Single-phase and two-phase treatments of convective heat transfer enhancement with nanofluids – A state-of-the-art review”, Int. J. Ther. Sci. 100, 75‒97 (2016).
- [18] H.A. Attia, “Effect of the ion slip on the MHD flow of a dusty fluid with heat transfer under exponential decaying pressure gradient”, Centr. Eur. J. Phys. 3 (4), 484–507 (2005).
- [19] K. Cramer and S. Pai, Magnetofluid Dynamics for Engineers and Applied Physicists, McGraw-Hill, New York, 1973.
- [20] H.A. Attia, W. Abbas, and M.A.M. Abdeen, “Ion slip effect on unsteady Couette flow of a dusty fluid in the presence of uniform suction and injection with heat transfer”, J. Braz. Soc. Mech. Sci. Eng. 38 (8), 2381–2391 (2015).
- [21] N.N. Anika, M. Hoque, S.I. Hossain, and M. Alam, “Thermal diffusion effect on unsteady viscous MHD micropolar fluid flow through an infinite vertical plate with Hall and ion-slip current”, Proc. Engr. 105, 160–166 (2015).
- [22] Z. Uddin and M. Kumar, “Hall and ion-slip effect on MHD boundary layer flow of a micro polar fluid past a wedge”, Scientia Iranica B 20 (3), 467–476 (2013).
- [23] S.S. Motsa and S. Shatery, “The effects of chemical reaction, Hall and ion-slip currents on MHD micropolar fluid flow with thermal diffusivity using a noval numerical technique”, J. Appl. Math. 2012, Art. ID 689015 (2012).
- [24] A.C. Eringen, “Theory of micropolar fluids”, J. Math. Mech. 16 (1), 1–18 (1966).
- [25] A.C. Eringen, “Theory of thermomicropolar fluids”, J. Math. Anal. Appl. 38 (2), 480–496 (1972).
- [26] G. Lukaszewicz, Micropolar Fluids: Theory and Applications, Birkhauser, Basel, 1999.
- [27] A.C. Eringen, Microcontinuum Field Theories. Fluent Media, Springer, New York, 2001.
- [28] N.A.A. Latiff, J. Uddin, O.A. Beg, and A.I. Ismail, “Unsteady forced bioconvection slip flow of a micropolar nanofluid from a stretching/shrinking sheet”, Journal of Nanomaterials, Nanoengineering, and Nanosystems 230 (4), 177–187 (2016).
- [29] S.E. Ahmed, M.A. Mansour, A.K. Hussein, and S. Sivasankaran, “Mixed convection from a discrete heat source in enclosures with two adjacent moving walls and filled with micropolar nanofluids”, Engr. Sci. Tech., Int. J. 19 (1), 364–376(2016).
- [30] P.V.S. Narayana, B. Venkateswarlu and S. Venkataramana, “Effects of Hall current and radiation absorption on MHD micropolar fluid in a rotating system”, Ain Shams Engr. J. 4, 843–854 (2013).
- [31] R.U. Haq, S. Nadeem, N.S. Akbar and Z.H. Khan, “Buoyancy and radiation effect on stagnation point flow of micropolar nanofluid along a vertically convective stretching surface”, IEEE Trans. Nanotech. 14 (1), 42–50 (2015).
- [32] N.S. Elgazery, “The effects of chemical reaction, Hall and ion slip currents on MHD flow with temperature dependent viscosity and thermal diffusivity”, Comm. Nonlinear Sci. Num. Sim. 14 (4), 1267–1283 (2009).
- [33] T.Y. Na, Computational Methods in Engineering Boundary Value Problems, Academic Press, 1979.
- [34] M. Awais, T. Hayat, S. Irum and A. Alsaedi, “Heat generation/absorption effects in a boundary layer stretched flow of Maxwell nanofluid: Analytic and numeric solutions”, PLOS ONE 10 (6), e0129814 (2015).
- [35] J. A. Khan, M. Mustafa,T. Hayat and A. Alsaedi, “Numerical study of Cattaneo-Christov heat flux model for viscoelastic flow due to an exponentially stretching surface”, PLOS ONE 10 (9), e0137363 (2015).
- [36] M. Mustafa, A. Mushtaq, T. Hayat and B. Ahmad, “Nonlinear radiation heat transfer effects in the natural convective boundary layer flow of nanofluid past a vertical plate: A numerical study”, PLOS ONE 9 (9), e103946 (2014).
- [37] A. Mushtaq, M. Mustafa, T. Hayat and A. Alsaedi, “Numerical study of the non-linear radiation heat transfer problem for the flow of a second-grade fluid”, Bulg. Chem. Comm. 47 (2), 725‒732 (2015).
- [38] B.I. Olajuwon, “Convection heat and mass transfer in a hydromagnetic flow of a second-grade fluid in the presence of thermal radiation and thermal diffusion”, Int. Comm. Heat and Mass Trans. 38 (3), 377‒382 (2011).
- [39] L.F Shampine, M.W. Reichelt and J. Kierzenka, “Solving boundary value problems for ordinary differential equations in MATLAB with bvp4c”, http://www.mathworks.com/bvp_tutorial.
- [40] S. Mansur, A. Ishak and I. Pop, “The magnetohydrodynamic stagnation point flow of a nanofluid over a stretching/shrinking sheet with suction”, PLOS ONE 10 (3), e0117733 (2015).
- [41] L. Cao, X. Si and L. Zheng, “Convection of Maxwell fluid over stretching porous surface with heat source/sink in presence of nanoparticles: Lie group analysis”, Appl. Math. Mech. 37 (4), 433–442 (2016).
- [42] J. Li, L. Zheng and L. Liu, “MHD viscoelastic flow and heat transfer over a vertical stretching sheet with Cattaneo-Christov heat flux effects”, J. Mol. Liq. 221, 19‒25 (2016).
- [43] F.M. Abbasi and S.A. Shehzad, “Heat transfer analysis for three-dimensional flow of Maxwell fluid with temperature dependent thermal conductivity: Application of Cattaneo-Christov heat flux model”, J. Mol. Liq. 220, 848–854(2016).
- [44] Z. Abbas and M. Sheikh, “Numerical study of homogeneous-heterogeneous reactions on stagnation point flow of ferrofluid with non-linear slip condition”, Chinese J. Chem. Engr. 25 (1), 11–17 (2017).
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-abdff0b6-fe92-4d35-8e7e-670eac2c7b3d