Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
For the first time, the analytical electron microscopy has been used to determine the solute concentration profiles left behind the moving reaction front (RF) of the discontinuous precipitation (DP) reaction in a Fe-13.5 at.% Zn alloy. These profiles have been converted into grain boundary diffusivity (sδDb) values, using Cahn’s diffusion equation in its original form and the data of the growth rate of the discontinuous precipitates obtained from independent measurements. This approach has essentially removed existing difference in comparison to sδDb values obtained from Cahn′s simplified and Petermann–Hornbogen models relevant for the global approach to the DP. Simultaneously, the local values of sδDb have been up to 8–10 orders of magnitude higher than the data for volume diffusion coefficients and much greater than for diffusion at the stationary grain boundaries of Zn in pure Fe. This is clear indication that the rate controlling factor for DP reaction in the Fe-13 at.% Zn alloy is diffusion at the moving RF.
Czasopismo
Rocznik
Tom
Strony
190--196
Opis fizyczny
Bibliogr. 26 poz., rys.
Twórcy
autor
- Institute of Metallurgy and Materials Science, Polish Academy of Sciences, Reymonta St. 25, 30‑059 Kraków, Poland
autor
- Institute of Metallurgy and Materials Science, Polish Academy of Sciences, Reymonta St. 25, 30‑059 Kraków, Poland
- AGH-University of Science and Technology, Kraków, Poland
autor
- Institute of Metallurgy and Materials Science, Polish Academy of Sciences, Reymonta St. 25, 30‑059 Kraków, Poland
Bibliografia
- [1] Predel B, Frebel M. Die Gegenseitige Beeinflussung verschiedener Ausscheidungs-reaktionen in α-Fe-Zn-Mischkristallen. Acta Metall. 1972;20:1259–68.
- [2] Predel B, Frebel M. Zur Kinetik der feinlamellaren diskontinuierlichen Ausscheidung in α-Mischkristallen des Systems Eisen-Zink. Arch Eisenhüttenwes. 1972;43:839–44.
- [3] Predel B, Frebel M. Beitrag zur Klaerung des Ausscheidungsverhaltens der Alpha-Mischkristalle des Systems Eisen-Zink. Metall. 1973;27:460–6.
- [4] Schramm J, Mohrnheim A. Die Aushärtung von Eisen-Zink- und Kobalt-Zink-Legierungen. Z Met. 1948;39:71–8.
- [5] Hornbogen E. Two types of discontinuous precipitation in alpha iron solid solutions. Trans AIME. 1963;227:1411–8.
- [6] Speich GR. Cellular precipitation in Fe-Zn alloys. Trans AIME. 1968;242:1359–67.
- [7] Cahn JW. The kinetics of cellular segregation reactions. Acta Metall. 1959;7:18–28.
- [8] Gupta SP, Parthiban GT. Discontinuous precipitation and coarsening of lamellar cellular precipitate in Fe-Zn alloys. Metallography. 1988;21:11–32.
- [9] Chuang TH, Gust W, Predel B, Fournelle RA. Discontinuous coarsening and dissolution in an Fe-13.5 at% Zn solid solution. Mater Sci Eng. 1989;112:175–83.
- [10] Chuang TH, Fournelle RA, Gust W, Predel B. Drei diskontinuierliche Festkörperreaktionen in einer a-Fe-13.5 at-% Zn-Legierung. Z Met. 1989;80:318–26.
- [11] Gupta SP. A comparative study of the kinetics of interface diffusion controlled transformations in Fe-Zn alloys. Can Metall Q. 2001;40:127–42.
- [12] Burton BP, Perrot P. Fe-Zn (iron-zinc). Phase diagrams of binary iron alloys. Materials Park: ASM International; 1993. p. 459–466.
- [13] Solorzano IG, Purdy GR, Wheatherly GC. Studies of the initiation, growth and dissolution of the discontinuous precipitation product in aluminium–zinc alloys. Acta Metall. 1984;31:1709–17.
- [14] Zięba P. Recent progress in the energy-dispersive X-ray spectroscopy of the discontinuous precipitation and discontinuous dissolution reactions. Mater Chem Phys. 2000;62:183–21313.
- [15] Duly D, Cheynet MG, Brechet Y. Morphology and chemical nanoanalysis of discontinuous precipitation in Mg–Al alloys-I regular growth. Acta Metall Mater. 1994;42:3843–54.
- [16] Alexander KB. The growth kinetics of cellular precipitation, Ph.D. thesis, Carnegie-Melon University, Pittsburgh, PA; 1985.
- [17] Lopez GA, Zięba P, Gust W, Mittemeijer EJ. Discontinuous precipitation in a Cu –4.5 at-%In alloy. Mater Sci Technol. 2003;19:1539–45.
- [18] Nakkalil R, Gupta SP. Kinetics of discontinuous dissolution in an Fe-20 wt.% Zn alloy. Z Met. 1989;80:37–47.
- [19] Budurov S, Russev K, Zlateva G, Petrov R. Die Kinetik der diskontinuierlichen Ausscheidung in ferritischen Eisen-Zink-Legierungen. Z Met. 1973;64:372–6.
- [20] Gupta SP, Parthiban GT. Kinetics of discontinuous coarsening of cellular precipitate in Fe-Zn alloys. Z Met. 1985;76:505–11.
- [21] Petermann J, Hornbogen E. Drei Mechanismem der Ausscheidung in Blei-Natrium-Mischkristallen. Z Met. 1968;59:814–22.
- [22] Zięba P, Faryna M, Chronowski M. Combined in situ and EBSD studies of discontinuous precipitation in Al-22 at%.Zn alloy. Mater Char. 2019;157:109889.
- [23] Budurov S, Kovatchev P, Kamenova Z. Chemical diffusion of zinc into γ- and α-iron. Z Met. 1973;64:652–4.
- [24] Dohie JS, Cahoon JR, Caley WF. The grain boundary diffusion of Zn in α-Fe. J Phase Equilib Diffus. 2007;28:322–7.
- [25] Herzig C, Neuhaus P, Geise J. Solute diffusion in the grain boundary. In: Saimoto S, Purdy GR, Kidson GV, editors. Solute-defect interaction: theory and experiment. Toronto: Pergamon Press; 1986. p. 271–280.
- [26] Hässner A. Untersuchung der Korngrenzendiffusion von Zn-65 in α-Aluminium-Zink-Legierungen. Kristall Tech. 1974;9:1371–88.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-abddaa39-ca1e-414c-96fe-a4c3e6c19f4a