PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Comparison of genetic algorithm and neural network approaches for the prognosis of mechanical idle running losses in agriculture tractor transmission

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
An experimental investigation of mechanical idle running losses in an agriculture tractor transmission was used to collect a wide range of data. The influence of the engine rotation speed, the number of switched-on gears, and the oil level in the transmission gearbox on the idle running losses was determined. Adequate regression models in cases of switched-on and switched-off PTO were received. A genetic algorithm was used to optimize mathematical models obtained using regression analysis. A feedforward artificial neural network was also developed to estimate the same experimental data for mechanical idle running losses in transmission. A back-propagation algorithm was used when training and testing the network. A comparison of the correlation coefficient, reduced chi-square, mean bias error, and root mean square error between the experimental data and fit values of the obtained models was made. It was concluded that the neural network represented the mechanical idle running losses in tractor transmission more accurately than other models.
Czasopismo
Rocznik
Strony
51--59
Opis fizyczny
Bibliogr. 18 poz.
Twórcy
autor
  • University of Ruse; Studentska 8, 7017 Ruse, Bulgaria
  • University of Ruse; Studentska 8, 7017 Ruse, Bulgaria
Bibliografia
  • 1. Chandrasekaran, G. & Sreebalaji, V.S. & Saravanan, R. Multi-objective optimization of spiral bevel gear pair design using non-dominated sorting genetic algorithm II. Journal of the Balkan Tribological Association. 2019. Vol. 25. No. 2. P. 245-259.
  • 2. Cheng, Z. & Lu, Z. & Qian, J. A new non-geometric transmission parameter optimization design method for HMCVT based on improved GA and maximum transmission efficiency. Computers & Electronics in Agriculture. 2019. Vol. 167. Paper No. 105034. DOI: 10.1016/j.compag.2019.105034.
  • 3. Kakati, D. & Roy, S. & Banerjee, R. Development of an artificial neural network based virtual sensing platform for the simultaneous prediction of emission-performance-stability parameters of a diesel engine operating in dual fuel mode with port injected methanol. Energy Conversion & Management. 2019. Vol. 184. P. 488-509.
  • 4. Петров, В. & Иванов, Р. & Станчева, Н. & Станчев, Д. Относно влиянието на конструк тивните и експлоатационни фактори върху загубите в тракторни механични трансмисии. Сборник трудове на МНК по Общо машиностроително конструиране. Русе. 2009. P. 181-185. [In Bulgarian: About influence of the constructive and running factors on the losses in agriculture tractor. Proceedings of ISC General machine design. Ruse. Bulgaria. 2009. P. 181-185].
  • 5. Petrov, V. & Stancheva, N. & Ivanov, R. & Stanchev, D. An Investigation of the Idle Running Losses in Tractor Transmissions. In: Proceedings of the 3RD International Conference POWER TRANSMISSIONS ’09. Kallithea. Greece. 2009. P. 611-615.
  • 6. Bhoskar, T. & et al. Genetic algorithm and its applications to mechanical engineering. In: Materials Proceedings. 2015. Vol. 2. No. 4. P. 2624-2630.
  • 7. Sun, Y. & Gu, Y. & Xiong, H. Mechanical optimization design based on genetic algorithm. Sensors and Transducers. 2013. Special Issue. P. 19-24.
  • 8. Dhingra, A.K. & Rao, S.S. A neural network based approach to mechanical design optimization. Engineering Optimization. 1992. Vol. 20. No. 3. P. 187-203.
  • 9. Qi, Y. & Wang, W. & Xiang, Ch. Neural network and efficiency based control for dual-mode hybrid electric vehicles. In: 34th Chinese Control Conference, IEEE. 2015.
  • 10. El-Gindy, M. & Palkovics, L. Possible application of artificial neural networks to vehicle dynamics and control. Int. J of Vehicle Design. 1993. Vol. 14. No. 5/6. P. 592-614.
  • 11. Palkovics, L. & El-Gindy, M. Neural network representation of tyre characteristics: the Neuro-Tyre. Int. J. of Vehicle Design. 1993. Vol. 14. No. 5/6. P. 563-591.
  • 12. Shioutsuka, T. & Nagamatsu, A. & Yoshida, K. Adaptive control of 4WS systems by using neural network. In: Proc. AVEC’92. Japan. 1992. P. 252-257.
  • 13. Drivetrain losses (efficiency). Available at: https://x-engineer.org/automotive-engineering/drivetrain/transmissions/drivetrain-lossesefficiency/.
  • 14. Li, J. & Li, Ch.-Ch. & Huang, J. transmission efficiency analysis and experiment research of gear box. Advances in Engineering Research (AER). 2016. Vol. 105.
  • 15. Murray, M. Total system efficiency. Power transmission engineering. 2010. P. 16-23.
  • 16. Bera, P. Development of engine efficiency characteristic in dynamic working states. Energies. 2019. Vol. 12. No. 15. P. 2906-2906. DOI: 10.3390/en12152906.
  • 17. Rydberg, K. Hydro-mechanical Transmissions. Fluid and Mechatronic Systems. 2010. Vol. 2. P. 51-60.
  • 18. Taran, I. & Klymenko, I. Innovative mathematical tools for benchmarking transmissions of transport vehicles. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu. 2014. Vol. 3. P. 76-81.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-abdca007-6702-4a13-9455-34f77804fa14
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.