Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The as-cast microstructure of ductile cast iron (DI) was investigated using light microscopy (LM) and SEM techniques. Further the influence of hot plastic extrusion at 1000°C with plastic strain in the range of 20-60-80% on the transformation of the as-cast microstructure and on the mechanical properties was studied. Besides this, the microstructure of DI subjected to hot extrusion after the fracture of the corresponding samples induced by compression tests was thoroughly investigated. It was found that compression had a dramatic influence on a shear deformation and hence shear fracture of the compressed samples. It was shown that the shear fracture of the hot deformed ductile iron is accompanied by the occurrence of a narrow zone of severe plastic deformation. The fracture surfaces of the extruded samples subjected to the tensile tests and the compression tests were examined.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
639--648
Opis fizyczny
Bibliogr. 38 poz., fot., rys., tab.
Twórcy
autor
- Slovak University of Technology, Faculty of Materials Science and Technology, J. Bottu 25, Trnava, 917 24 Slovakia
autor
- Slovak University of Technology, Faculty of Materials Science and Technology, J. Bottu 25, Trnava, 917 24 Slovakia
autor
- National Academy of Sciences of Belarus, Physical Technical Institute, 10. Kuprevicha Str., Minsk, 220141 Belarus
autor
- Slovak University of Technology, Faculty of Materials Science and Technology, J. Bottu 25, Trnava, 917 24 Slovakia
Bibliografia
- [1] J.A. Pero-Sanz Elorz, D. Fernández González, L.F. Verdeja, Physical Metallurgy of Cast Irons, Springer (2018).
- [2] F.D. Gelin, A.S. Chaus, Metallic Materials (In Russian), Second ed., Vyshejshaya Shkola, Minsk (2007).
- [3] G. Artola, A. Monzón J. Lacaze, J. Sertucha, Mater. Sci. Eng. A 831, 142206 (2022).
- [4] A. Mussa, P. Krakhmalev, J. Bergstrom, Wear 498-499, 204305 (2022).
- [5] C. Liu, Y. Du, T. Ying, L. Zhang, X. Zhang, X. Wang, G. Yan, B. Jiang, Mater. Today Commun. 31, 103522 (2022).
- [6] T. Wigger, T. Andriollo, C. Xu, S.J. Clark, Z. Gong, R.C. Atwood, J.H. Hattel, N.S. Tiedje, P.D. Lee, M.A. Azeem, Acta Mater. 221, 117367 (2021).
- [7] M. Benedetti, V. Fontanari, D. Lusuardi, Eng. Fract. Mech. 206, 427-441 (2019).
- [8] J. Qing, S. Lekakh, M. Xu, D. Field, Carbon 171, 276-288 (2021).
- [9] D.M. Stefanescu, G. Alonso, R. Suarez, Metals 10, 221 (2020).
- [10] I. Riposan, M. Chisamera, S. Stan, Mater. Sci. Forum 925 (3), 3-11 (2018).
- [11] U. Tewary, D. Paul, H.K. Mehtani, S. Bhagavath, A. Alankar, G. Mohapatra, S.S. Sahay, A.S. Panwar, S. Karagadde, I. Samajdar, Acta Mater. 226, 117660 (2022).
- [12] D.M. Stefanescu, G. Alonso, P. Larrañaga, E. De la Fuente, R. Suarez, Acta Mater. 107, 102-126 (2016).
- [13] K. Theuwissen, J. Lacaze, L. Laffont, Carbon 96, 1120-1128 (2016).
- [14] D.D. Double, A. Hellawell, Acta Metall. Mater. 43, 2435-2442 (1995).
- [15] T. Skaland, O. Grong, T. Grong, Metall. Trans. A 24A, 232-2345 (1993).
- [16] W.C. Johnson, H.B. Smartt, Metall. Trans. A 8, 553-565 (1977).
- [17] A.S. Chaus, Met. Sci. Heat Treat. 57 (7-8), 419-427 (2015).
- [18] A.S. Chaus, J. Soka, Ľ. Čaplovič, Met. Sci. Heat Treat. 55 (3-4), 175-180 (2013).
- [19] Z.-Q. Shen, X.-L. Tian, H.-L. Zheng, T.-T. Li, Y. Xu, R.-F. Xu, N. Zhang, Foundry 61 (4), 357-361 (2012).
- [20] J.K. Solberg, M.I. Onsøien, Mater. Sci. Technol. 17, 1238-1242 (2001).
- [21] T. Skaland, O. Grong, and T. A. Grong, Metall. Trans. A, 24, 2321-2345 (1993).
- [22] W. Zhou, D.O. Northwood, C. Liu, J. Mater. Res. Technol. 15 (12), 3836-3849 (2021).
- [23] J. Bača, A.S. Chaus, Met. Sci. Heat Treat. 46 (5-6), 188-191 (2004).
- [24] A.S. Chaus, J. Sojka, A.I. Pokrovskii, Phys. Met. Metallogr. 114 (1), 85-94 (2013).
- [25] A.I. Pokrovskii, Hot Plastic Deformation of Cast Iron. Structure, Properties, Technological Fundamentals, Belaruskaya Navuka, Minsk, 2010 [in Russian].
- [26] I. Hervas, M. Ben Bettaieb, A. Thuault, E. Hug, Mater. Des. 52, 524-532 (2013).
- [27] K. Qi, F. Yu, F. Bai, Z. Yan, Z. Wang, T. Li, Mater. Des. 30, 4511-4515 (2009).
- [28] X. Zhao, X. Yang, T. Jing, J. Iron. Steel Res. Int. 18, 48-51 (2011).
- [29] X. Zhao, T.F. Jing, Y.W. Gao, G.Y. Qiao, J.F. Zhou, W. Wang, J. Mater. Sci. 39, 6093-6096 (2004).
- [30] A. V. Lisovsky , B. A. Romantsev, Metallurgist 54, 173-177 (2010).
- [31] T. El Bitar , E. El Banna, Mater. Lett. 31, 145-150 (1997).
- [32] G. Iannitti, A. Ruggiero, N. Bonora, S. Masaggia, F. Veneri, Theor. Appl. Fract. Mech. 92, 351-359 (2017).
- [33] D. Myszka, L. Cybula, A. Wieczorek, Arch. Metall. Mater. 59 (3), 1171-1179 (2014).
- [34] F. Iacoviello, O. Di Bartolomeo, V. Di Cocco, V. Piacente, Mater. Sci. Eng. A 478, 181-186 (2008).
- [35] T. Borsato, P. Ferro, A. Fabrizi, F. Berto, C. Carollo, Int. J. Fatigue 145, 106137 (2021).
- [36] S.N. Lekakh, M. Buchely, R. O’Malley, L. Godlewski, Mei Li, Int. J. Fatigue 148, 106218 (2021).
- [37] P. Čanžar, Z. Tonkovic, J. Kodvanj, Mater. Sci. Eng. A 556, 88-99 (2012).
- [38] A.S. Chaus, Phys. Met. Metallogr. 115 (7), 672-681 (2014).
Uwagi
The financial support of the grants from the Ministry of Education, Science, Research and Sport of the Slovak Republic VEGA 1/0747/19 and VEGA 1/0796/20 is gratefully acknowledged. The authors are grateful to Dr Jaroslav Sojka for technical help and helpful discussions with respect to the results obtained in this work.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-abdc2cc6-ee39-4ecd-b679-b89ccf2f58d6