PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Radiation-induced cancer risk and decision-making in a simulated Cs-137 urban event

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The triggering of a “dirty bomb” generates a complex scenario, with enormous challenges for the responders due to initial misinformation and the urgency to act quickly yet effectively. Normally, the first 100 h are decisive for perceiving the risk in a more realistic dimension, but the support of methodologies that rely on computational simulations can be valuable when making key decisions. This work seeks to provide support for the early decision-making process by using a Gaussian model for the distribution of a quantity of Cs-137 spread by a radiological dispersive device (RDD). By sequentially joining two independent programs, HotSpot Health Physics codes and RESidual RADiation (RESRAD)-RDD family of codes, we came up with results that suggest a segmented approach to the potentially affected population. These results advocate that (a) the atmospheric stability conditions represented by the Pasquill–Gifford classes and (b) the population subgroups defi ned by radiation exposure conditions strongly influence the postdetonation radiological effects. These variables should be taken into account in the elaboration of flexible strategies that include many climatic conditions and to prioritize attention to different groups of public at risk. During the initial phases of such an event, it is believed that simulations using Gaussian models may be of value in anticipating the possible changes in key variables during the decision-making process. These variables may severely affect the effectiveness of the actions of responders and the general public’s safety.
Czasopismo
Rocznik
Strony
37--43
Opis fizyczny
Bibliogr. 18 poz., rys.
Twórcy
  • IBMEC, Faculty of Engineering, Graduate Program Rio de Janeiro, Brazil
  • Nuclear Engineering Graduate Program Federal University of Rio de Janeiro (COPPE/UFRJ) Rio de Janeiro, Brazil
  • Defense Engineering Graduate Program Military Institute of Engineering Praça General Tibúrcio 80, Rio de Janeiro, Brazil
  • Nuclear Engineering Graduate Program Federal University of Rio de Janeiro (COPPE/UFRJ) Rio de Janeiro, Brazil
  • IBMEC, Faculty of Engineering, Graduate Program Rio de Janeiro, Brazil
autor
  • Defense Engineering Graduate Program Military Institute of Engineering Rio de Janeiro, Brazil
  • Defense Engineering Graduate Program Military Institute of Engineering Rio de Janeiro, Brazil
  • Defense Engineering Graduate Program Military Institute of Engineering Rio de Janeiro, Brazil
  • Nuclear Engineering Graduate Program Federal University of Rio de Janeiro (COPPE/UFRJ) Rio de Janeiro, Brazil
Bibliografia
  • 1. Rother, F. C., Rebello, W. F., Healy, M. J. F., Silva, M. M., Cabral, P. A. M., Vital, H. C., & Andrade, E. R. (2016). Radiological risk assessment by convergence methodology model in RDD scenarios. Risk Anal., 36(11), 2039–2046.
  • 2. Andrade, C. P., Souza, C. J., Camerini, E. S. N., Alves, I. S., Vital, H. C., Healy, M. J. F., & De Andrade, E. R. (2018). Support to triage and public risk perception considering long-term response to a Cs-137 radiological dispersive device scenario. Toxicol. Ind. Health, 34(6), 433–438.
  • 3. Jeong, H., Park, M., Jeong, H., Hwang, W., Kim, E., & Han, M. (2013). Radiological risk assessment caused by RDD terrorism in an urban area. Appl. Radiat. Isot., 79, 1–4.
  • 4. Porter, K., & Lee, L. (2007). Radiological terrorism scenarios. Prehosp. Disaster Med., 22(6), 547.
  • 5. Harper, F. T., Musolino, S. V., & Wente, W. B. (2007).Realistic radiological dispersal device hazard boundaries and ramifications for early consequence management decisions. Health Phys., 93(1), 1–16.
  • 6. Mettler, F. A. Jr. (2005). Medical resources and requirements for responding to radiological terrorism. Health Phys., 89(5), 488–493.
  • 7. Conklin, C., & Edwards, J. (2000). Selection of protective action guides for nuclear incidents. EPA. J. Hazard. Mater., 75(2/3), 131–144.
  • 8. Timins, J. K., & Lipoti, J. A. (2004). Radiological terrorism. N. J. Med., 101(Suppl. 9), 66–75; quiz 75–76.
  • 9. Stone, R. (2002). Radiological terrorism. New effort aims to thwart dirty bombers. Science, 296(5576), 2117–2119.
  • 10. Homann, S. G., & Aluzzi, F. (2019). HotSpot Health Physics Codes Version 3.0 User’s Guide. Lawrence, CA, USA: Livermore National Laboratory.
  • 11. Yu, C. (2009). Preliminary report on operational guidelines developed for use in emergency preparedness and response to a radiological dispersal device incident. Chicago: Argonne National Laboratory.
  • 12. Pasquill, F. (1961). The estimation of the dispersion of windborne material. Meteorol. Mag., 90(1063), 33–41.
  • 13. Maillie, H. D., Simon, W., Watts, R. J., & Quinn, B. R. (1993). Determining person-years of life lost using the BEIR V method. Health Phys., 64(5), 461–466.
  • 14. Maillie, H. D., & Jacobson, A. P. (1992). A graphical method of estimating fatal radiation-induced cancers using the BEIR V method. Health Phys., 63(3), 273–280.
  • 15. ICRP. (1977). Implications of Commission recommendations that doses be kept as low as readily achievable. In A report of ICRP Committee 4 (pp. 2–3). Oxford. (ICRP Publication 22).
  • 16. Institute of Medicine. (1999). Follow-up of persons with known or suspected exposure to ionizing radiation. In Potential radiation exposure in military operations: Protecting the soldier before, during, and after (pp. 88–107). Washington, DC: The National Academies Press. Available from https://doi.org/10.17226/9454.
  • 17. IAEA. (1996). Methods for estimating the probability of cancer from occupational radiation exposure. Vienna: International Atomic Energy Agency. (IAEATECDOC-870).
  • 18. INCa. (2018). Estimate/2018 – Cancer incidence in Brazil. Rio de Janeiro: Instituto Nacional de Câncer José Alencar Gomes da Silva.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-abd9040c-0898-454a-bba9-98d06935cf60
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.