PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Localization of fugitive methane emission from natural gas distribution network of Titas Gas

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of this paper is to localize the fugitive leaks from the above ground facilities of the existing system of Titas Gas (TG) after developing mathematical model for fugitive emission. Soap screening techniques and Gasurveyor 500 series instrument were used in this study for detecting potential leaks. Leaked gas was quantified using either Hi-Flow gas sampler or bagging measurements system. The results show that the respective potential gas leaking point of City Gate Station (CGS), commercial Regulating and Metering Station (RMS), industrial RMS, residential RMS and Town Bordering Station (TBS)/ District Regulating Station (DRS) are scrubber dump valve (average leak rate 217.00 L/min), insulating point (average leak rate 4.04 L/min), tube fitting connector (average leak rate 8.00 L/min), connector (average leak rate 1.55 L/min) and pressure relief valve (average leak rate 437.92 L/min). Fugitive methane emission can be reduced by stopping leaks of fittings or components having high KLeak  value.
Rocznik
Strony
127--131
Opis fizyczny
Bibliogr. 18 poz., rys., tab.
Twórcy
autor
  • Universiti Teknologi PETRONAS, Department of Chemical Engineering, 32610 Bandar Seri Iskandar, Perak, Malaysia
  • Titas Gas Transmission and Distribution Co. Ltd., 105, Kazi Nazrul Islam Avenue, Kawran Bazar, Dhaka-1215, Bangladesh
  • Titas Gas Transmission and Distribution Co. Ltd., 105, Kazi Nazrul Islam Avenue, Kawran Bazar, Dhaka-1215, Bangladesh
Bibliografia
  • 1. Safitri, A., Gao, X. & Mannan, M.S. (2011). Dispersion Modeling Approach for Quantification of Methane Emission Rates from Natural Gas Fugitive Leaks Detected by Infrared Imaging Technique. J. Loss. Prevent. Proc. 24, 138-145. DOI: 10.1016/J.JLP.2010.11.007.
  • 2. Zimmerle, D.J., Williams, L.L., Vaughn, T.L., Quinn, C., Subramanian, R., Duggan, G.P., Willson, B., Opsomer, J.D., Marchese, A.J., Martinez, D.M. & Robinson, A.L. (2015). Methane emissions from the natural gas transmission and storage system in the United States. Environ. Sci. Technol. 49, 9374-9383. DOI: 10.1021/acs.est.5b01669.
  • 3. Litto, R., Hayes, R.E. & Liu, B. (2007). Capturing Fugitive Methane Emissions from Natural Gas Compressor Buildings. J. Environ. Manage. 84(3), 347-361. DOI: 10.1016/J.JENVMAN.2006.06.007.
  • 4. Agarwal, A. (2011). Evaluation of Fugitive Methane Emission Factor for Oil and Gas in India. SPE International, SPE 144628, 1-12. DOI: http://dx.doi.org/10.2118/144628-MS.
  • 5. Mandal, P.C., Chowdhury, S. & Morshed S. (2015). Fugitive Methane Emission from Natural Gas Distribution Network of Titas Gas and Environmental Risk. Energy and Sustainability V: Special Contributions, WIT Press, 137-148.
  • 6. Reddy, H.P., Narasimhan, S., Bhallamudi, S.M. & Bairagi, S. (2011). Leak Detection in Gas Pipeline Networks Using an Effi cient State Estimator. Part-I: Theory and simulations. Comput. Chem. Eng. 35, 651-661. DOI: 10.1016/J.COMPCHEMENG.2010.10.006.
  • 7. Jelinek, K.A., Rooney T.C. & Webb M.G. (1993). Fugitive Emissions from an Offshore Oil and Gas Production Platform. SPE International, SPE 25943, 119-124. DOI: http://dx.doi.org/10.2118/25943-MS.
  • 8. Nwaoha, C. (2010). Controlling Fugitive Emissions in Nigeria’s Oil and Gas Industry: Proper Sealing Device Selection a Panacea. SPE International, SPE 140675, 1-9. DOI: 10.2118/140675-MS.
  • 9. Yuhua, D., Huilin, G., Jing’en, Z. & Yaorong, F. (2002). Evaluation of gas release rate through holes in pipelines. J. Loss. Prevent. Proc. 15(6), 423-428. DOI: 10.1016/S0950-4230(02)00041-4.
  • 10. Yuhu, D., Huilin, G., Jing’en, Z. & Yaorong, F. (2003). Mathematical Modeling of Gas Release through Holes in Pipelines. Chem. Eng. J. 92, 237-241. DOI: 10.1016/S1385-8947(02)00259-0.
  • 11. Moloudi, R. & Esfahani, J.A. (2014). Modeling of gas release following pipeline rupture: Proposing non-dimensional correlation. J. Loss. Prevent. Proc. 32, 207-217. DOI: 10.1016/J.JLP.2014.09.003.
  • 12. Lu, L., Zhang, X., Yan, Y., Li, J.M. & Zhao, X. (2014). Theoretical Analysis of Natural-Gas Leakage in Urban Mediumpressure Pipelines. J. Environ. Hum. 1(2), 71-86. Retrieved on March 10, 2016, from http://www.scipublish.com/journals/EH/papers/520.
  • 13. Li, K., Zhou, X., Tu, R., Yi, J. & Jiang, X. (2015). Experimental investigation of CO2 accidental release from a pressurised pipeline. Energ. Proced. 75, 2221-2226. DOI: 10.1016/J.EGYPRO.2015.07.388.
  • 14. Ivings, M.J., Clarke, S., Gant, S.E., Fletcher, B., Heather, A., Pocock, D.J., Pritchard, D.K., Santon, R. & Saunders, C.J. (2008). Area Classifi cation for Secondary Releases from Low Pressure Natural Gas Systems, In site: Modelling Gas Leaks. Health and Safety Laboratory, Health and Safety Executive, RR630 Research Report, Crown copyright 2008, UK, 14-18. Retrieved on March 10, 2016, from http://www.hse.gov.uk/research/rrpdf/rr630.pdf.
  • 15. OAQPS (2014). Oil and Natural Gas Sector Leaks Report for Oil and Natural Gas Sector Leaks. U.S. EPA Office of Air Quality Planning and Standards (OAQPS), 1-63. Retrieved on March 10, 2016, from https://www3.epa.gov/airquality/oilandgas/2014papers/20140415leaks.pdf.
  • 16. UNFCCC (2012). Reducing gas leakages within the Moldovagaz distribution network. Republic of Moldova, United Nations Framework Convention on Climate Change (UNFCCC), Project 6194. Retrieved on March 10, 2016, from https://cdm.unfccc.int/Projects/DB/TUEV-RHEIN1336622539.87/view.
  • 17. Mandal, P.C. (2014). Gas Leak Detection in Pipelines& Repairing System of Titas Gas. J. Appl. Eng. 2(2), 23-34. Retrieved on March 10, 2016, from http://joae.org/index.php/joae/article/view/7/6.
  • 18. Citizendium (2016). Specific heat ratio. The Citizens’ Compendium. Retrieved on September 3, 2016, from http://en.citizendium.org/wiki/Special:BookSources/0070697167.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-abd8fd4c-c284-43dc-a0a7-2d410b7c1c61
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.