PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Application of laser barcode technology to sheet metal parts identification

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: In the development of ideas for Industry 4.0, information about the element production cycle has become more and more important. Knowledge of the subsequent forming processes, determination of the machine on which the process has been carried out and of the type and wear of the tool, leads to smart production management, which plays an increasingly important role in the metal forming industry. To meet the current expectations for these challenges, an advanced technology needs to be introduced for monitoring the manufacturing processes by deploying flexible solutions. This technology must include, but not be limited to, identifying and tracking the product using laser marking. Design/methodology/approach: Laser marking allows a permanent mark in the form of a barcode to be applied to the sheet metal surface. Commonly used marking methods and the condition of the sheet metal surface can affect the marking contrast. This paper presents a concept for recording individual stages of sheet metal forming and determination of the impact of the laser marking technology on the contrast of the applied barcode. To ensure accurate control of the deformation stages, the bulging process of the spherical dome has been used as an example. Findings: Analysis of the influence of laser marking method on the barcode recognition accuracy can contribute to the development of smart management of the production process according to the idea of Industry 4.0. Research limitations/implications: A large plastic deformation has been applied to the sheet metal surface and no limitation in a barcode reading process (using vision scanning technology) was indicated. Also, the geometry deformation (different angle view of the CCD camera) of the barcode image has introduced no additional problems with a barcode reading. Originality/value: The optimal parameters of a laser marking technique for barcode marking, which are critical for the material that is subjected to metal forming operations that deform it, have been studied. The results shows that traceability is an attractive solution for tracking technological data in the production chain for a single-shaped product.
Rocznik
Tom
Strony
501--516
Opis fizyczny
Bibliogr. 25 poz.
Twórcy
  • Institute of Manufacturing Technologies, Warsaw University of Technology
  • Institute of Manufacturing Technologies, Warsaw University of Technology
  • Professor Emeritus
Bibliografia
  • 1. Astarita, A., Genna, S., Leone, C., Memola Capece Minutolo, F., Squillace, A., Velotti, C. (2016). Study of the laser marking process of cold sprayed titanium coatings on aluminum substrates. Optics & Laser Technology, Vol. 83, pp. 168-176. https://doi.org/10.1016/ j.optlastec.2016.04.007.
  • 2. Bassoli, E. (2018). Direct Part Marking of Inconel 718. Int. J. Appl. Eng. Res., Vol. 13(5), pp. 2235-2241.
  • 3. Chaar, J., Teichroew, D., Volz, R., (1993), Developing manufacturing control software: A survey and critique. International Journal of Flexible Manufacturing Systems. Vol. 5(1), pp. 53-88. doi:10.1007/BF01328739.
  • 4. Chowdhury, A.I., Rahman, M., Sakib, N. (2019). A Study on Multiple Barcode Detection from an Image in Business System. International Journal of Computer Applications. Vol. 181(37), pp. 30-37. doi:10.5120/ijca2019918340.
  • 5. Fraser, A., Brochu, V., Gingras, D., Godmaire, XP. (2016). Important considerations for laser marking an identifier on aluminum. In: E. Williams (Ed.), Light Metals (pp. 261-264). https://doi.org/10.1007/978-3-319-48251-4_43.
  • 6. Guk, S., Plotnikova, A., Kawalla, R. (2016). The effect of microstructural and geometric inhomogeneities induced by laser for forming strain analysis on sheet metal formability. Materials Sciences and Applications, Vol. 7(5), pp. 247-256. https://doi.org/10.4236/ msa.2016.75025.
  • 7. Guk, S., Preis, M., Kawalla, R. (2017). Metal formability interactions in laser marking for creating of grid patterns for forming strain analysis of high strength steels. Key Engineering Materials, Vol. 746, pp. 92-98. https://doi.org/10.4028/www.scientific.net/KEM.746.92.
  • 8. Ho, S., Xie, M., Goh, T. (2003). Process Monitoring Strategies for Surface Mount Manufacturing Processes. International Journal of Flexible Manufacturing Systems, Vol. 15(2), pp. 95-112. doi:10.1023/A:1024432723561.
  • 9. Hozdić, E. (2015). Smart factory for industry 4.0: A review. International Journal of Modern Manufacturing Technologies. Vol. 7(1), pp. 28-35.
  • 10. Kocańda, A., Jasiński, C. (2016). Extended evaluation of Erichsen cupping test results by means of laser speckle. Archives of Civil Mechanical Engineering. Vol. 16(2), pp. 211-216. https://doi.org/10.1016/j.acme.2015.10.007.
  • 11. Krivacs, K., Hartvanyi, T., Tapler, C. (2010). Basic requirements of material traceability in warehouses, Paper presented at the 6th International Scientific Conference May 13-14, 2010, Vilnius, Lithuania. doi:10.3846/bm.2010.113.
  • 12. Lehmann, M., Kuhn, H. (2020), Modeling and analyzing sequence stability in flexible automotive production systems. Flexible Services and Manufacturing Journal, Vol. 32(2), pp. 366-394. doi:10.1007/s10696-019-09334-x.
  • 13. Leone, C., Bassoli, E., Genna, S., Gatto, A. (2018). Experimental investigation and optimization of laser direct part marking of Inconel 718. Optics and Lasers in Engineering, Vol. 111, pp. 154-166. https://doi.org/10.1016/j.optlaseng.2018.08.004.
  • 14. Li, J., Lu, C., Wang, A., Wu, Y., Ma, Z., Fang, X., et al. (2016). Experimental investigation and mathematical modeling of laser marking two-dimensional barcodes on surfaces of aluminum alloy. Journal of Manufacturing Processes, Vol. 21, pp. 141-152. https://doi.org/10.1016/j.jmapro.2015.12.007.
  • 15. Li, X., He, W., Lei, L., Wang, J., Guo, G., Zhang, T., Yue, T. (2016). Laser direct marking applied to rasterizing miniature Data Matrix Code on aluminum alloy. Optics & Laser Technology, Vol. 77, pp. 31-39. https://doi.org/10.1016/j.optlastec.2015.08.020.
  • 16. Odintsova, G., Andreeva, Y., Salminen, A., Roozbahani, H., Van Cuong, L., et al. (2019). Investigation of production related impact on the optical properties of color laser marking. Journal of Materials Processing Technology, Vol. 274, pp. 1-7. https://10.1016/j.jmatprotec.2019.116263.
  • 17. Pavlidis, T., Swartz, J., Wang, YP. (1990). Fundamentals of bar code information theory. Computer, Vol. 23, pp. 74-86. https://doi.org/10.1109/2.55471.
  • 18. Penide, J., Quintero, F., Riveiro, A., Fernandez, A., del Val, J., Comesana, R., et al. (2015). High contrast laser marking of alumina. Applied Surface Science, Vol. 336, pp. 118-128. https://doi.org/10.1016/j.apsusc.2014.10.004.
  • 19. Peters, S., Lanza, G., Ni, J., Xiaoning, J., Pei-Yun, Y., Colledani, M. (2014). Automotive manufacturing technologies - an international viewpoint. Manufacturing Review, Vol. 1(10), pp. 1-12. doi:10.1051/mfreview/2014010.
  • 20. Shejwal, P., Wankhede, A., Shimpi, V.A., Wale, A., Sawant, A.D. (2016). A survey on existing barcodes and barcode generation techniques. International Journal of Computer Science and Information Technologies, Vol. 7(5), pp. 2307-2310.
  • 21. Sobotova, L., Badida, M. (2017). Laser marking as environment technology. Open Engineering, Vol. 7(1), pp. 303-316. https://doi.org/10.1515/eng-2017-0030.
  • 22. Świłło, S. (2013). Zastosowanie techniki wizyjnej w automatyzacji pomiarów geometrii i podnoszeniu jakości wyrobów wytwarzanych w przemyśle motoryzacyjnym. Prace Naukowe Politechniki Warszawskiej - monografia, Mechanika. Vol. 257, pp. 3-128.
  • 23. Świłło, S. (Aug. 2001). Automatic of strain measurement by using image processing. Paper presented at the 5th International Conference on Engineering Design and Automation, Las Vegas, USA.
  • 24. Świłło, S., Cacko, R., Kochański, A. (2016). Opracowanie metody wizyjnej do identyfikacji oznaczeń matryc. Hutnik - Wiadomości Hutnicze, Vol. 83(1), pp. 23-26. https://doi.org/10.15199/24.2016.1.5.
  • 25. Velotti, C., Astarita. A., Leone, C., Genna, S., Memola Capece Minutolo, F., Squillace, A. (2016). Laser marking of titanium coating for aerospace applications. Procedia CIRP, Vol. 41, pp. 975-980. https://doi.org/10.1016/j.procir.2016.01.006.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-abd80c39-955c-4fca-b473-0f95827f286a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.