Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Rozmyty regulator PI rzędu ułamkowego dla wielopoziomowego falownika do systemów fotowoltaicznych podłączonych do sieci (PV)
Języki publikacji
Abstrakty
These Applications of fractional calculus are becoming more and more effective, adaptable, and have produced positive outcomes in a variety of engineering and scientific domains. In this paper, a fuzzy fractional-order PI-based control approach for grid-connected photovoltaic (PV) systems is presented. The various advantages of multi-level inverters (MLIs) in industrial and grid-connected applications have resulted to their increasing application in recent years. A five-level neutral point (NPC) inverter is used to integrate PV electricity into the electrical grid with minimal harmonic distortions and highest power capacity. The output voltage of the inverter must be maintained in order to connect to a grid, even though that the photovoltaic output voltage varies considerably with solar radiation. To achieve this, three fuzzy fractional order PI (FFOPI)controllers were used to control the inverter output voltage (Vdc), direct current (Id), and quadratic current (Iq) around a reference values. A further comparison is made with the fuzzy PI (FPI). According to research, the FFOPI controller outperforms the FPI controller in terms of performance.
Te zastosowania rachunku ułamkowego stają się coraz bardziej efektywne, elastyczne i dają pozytywne rezultaty w różnych dziedzinach inżynierii i nauki. W tym artykule przedstawiono podejście oparte na rozmytym ułamkowym rzędzie sterowania PI dla systemów fotowoltaicznych (PV) podłączonych do sieci. Różne zalety falowników wielopoziomowych (MLI) w zastosowaniach przemysłowych i podłączonych do sieci spowodowały ich rosnące zastosowanie w ostatnich latach. Falownik z pięciopoziomowym punktem neutralnym (NPC) służy do włączania energii elektrycznej z fotowoltaiki do sieci elektrycznej przy minimalnych zniekształceniach harmonicznych i najwyższej mocy. Napięcie wyjściowe falownika musi być utrzymywane w celu podłączenia do sieci, mimo że napięcie wyjściowe fotowoltaiki znacznie się zmienia w zależności od promieniowania słonecznego. Aby to osiągnąć, zastosowano trzy rozmyte regulatory PI ułamkowego rzędu (FFOPI) do sterowania napięciem wyjściowym falownika (Vdc), prądem stałym (Id) i prądem kwadratowym (Iq) wokół wartości odniesienia. Dalsze porównanie przeprowadza się z rozmytym PI (FPI). Według badań kontroler FFOPI przewyższa kontroler FPI pod względem wydajnoś.
Wydawca
Czasopismo
Rocznik
Tom
Strony
146--153
Opis fizyczny
Bibliogr. 32 poz., rys., tab.
Twórcy
autor
- Wydział Elektrotechniki, Laboratorium LARHYSS, Uniwersytet Biskra, B.P.145, 07000, Biskra, Algieria
autor
- Wydział Elektrotechniki, Laboratorium LARHYSS, Uniwersytet Biskra, B.P.145, 07000, Biskra, Algieria
autor
- Laboratorium Inżynierii Elektrycznej (LGE), Wydział Technologiczny, Uniwersytetu M’sila, Algieria
Bibliografia
- [1] Natarajan P, Kaliannan P. A comprehensive review on reduced switch multilevel inverter topologies modulation techniques and applications, Renewable and Sustainable Energy Reviews, 2017, 76, 1248-1282. https://doi.org/10.1016/j.rser.2017.03.121
- [2] Aouchiche N. Meta-heuristic optimization algorithms based direct current and DC link voltage controllers for three-phase grid connected photovoltaic inverter, Solar Energy, 2020, 207,683-692. https://doi.org/10.1016/j.solener.2020.06.086
- [3] Khazraei M, Sepahvand H, Ferdowsi M, Corzine KA. Hysteresis-based control of a single-phase multilevel flying capacitor active rectifier. IEEE Transaction Power Electronic, 2012, 28, 154–164. doi: 10.1109/TPEL.2012.2197222.
- [4] Tsengenes, G, Nathenas, T, Adamidis G. A three-level space vector modulated grid connected inverter with control scheme based on instantaneous power theory. Simulion Modelling Practice and Theory, 2012, 25, 134–147. https://doi.org/10.1016/j.simpat.2012.02.004
- [5] Mohamed S, Anna R, Khalid Y, Muhammad Najwan H, Tze-Zhang A, Ibrahim A. A Comprehensive Review on Multilevel Inverters for Grid-Tied System Applications, Energies 2022, 15(17), 6315. https://doi.org/10.3390/en15176315
- [6] Astrom K.J, Hagglund . Pid Controllers: Theory, Design, and Tuning, 2nd ed.; Instrument Society of America: Pittsburgh, PA,USA, 1995, p. 343. https://aiecp.files.wordpress.com/2012/07/1-0-1-k-j-astrom-pid-controllers-theory-design-and-tuning-2ed.pdf
- [7] Ajmera Y.A, Sankeshwari S.S. Fuzzy fractional order sliding mode controller for dc motor. International Journal of Advances in Engineering & Technology; Bareilly, 2013, 6(4), 1876-1885. https://www.proquest.com/docview/1446485170
- [8] Zhang L, Shao X, Chen Z. The application of internal model fractional order control in induction motor speed control system. In Proceedings of the 35th Chinese Control Conference, Chengdu, China, 27–29 July, pp. 4640–4645.
- [1] Podlubny I. Fractional-order systems and PIλ Dμ -controllers. in IEEE Transactions on Automatic Control, 199, 44(1), 208- 214. doi: 10.1109/9.739144.
- [9] Zhang S, Liu L, Cui X. Robust FOPID controller design for fractional-order delay systems using positive stability region analysis, International Journal of Robust and Nonlinear Control, 2019, 29, 5195–5212. https://doi.org/10.1002/rnc.4667
- [10] Liu L, Xue D, Zhang S. General type industrial temperature system control based on fuzzy fractional-order PID controller. Complex Intelligent & System, 2021. https://doi.org/10.1007/s40747-021-00431-9
- [11] Monje CA, Vinagre BM, Feliu V, Chen Y. Tuning and auto-tuning of fractional order controllers for industry applications. Control Enginerinf Practice, 2008, 16(17), 798–812. https://doi.org/10.1016/j.conengprac.2007.08.006
- [12] Qin J, Li X, Yang Y. Application of a fractional order PID controller for temperature control in vegetable greenhouses. Journal of Southwest University(Natural Science), 2018, Ed 38:179–182. http://open.oriprobe.com/articles/47919928/Application_of_a_Fra ctional_Order_PID_Controller_f.htm
- [13] Pachauri N, Rani A, SinghV. Bioreactor temperature control using modified fractional order IMC-PID for ethanol production. Chemical Engineering Research and Design, 2017, 122, 97–112. https://doi.org/10.1016/j.cherd.2017.03.031
- [14] Kharedia R, Batra R. Performance Analysis of Grid-Connected Three-Phase Three-Level NPC Inverter. IEEE 8th Power India International Conference (PIICON), Kurukshetra, India, 2018, pp. 1-5. doi: 10.1109/POWERI.2018.8704361.
- [15] Arulkumar K, Vjayakumar D, Palanisamy K. Modeling and Control Strategy of Three Phase Neutral Point Clamped Multilevel PV Inverter Connected to the grid. Building Engineering,2015, 3, 195-202. doi.org/10.1016/j.jobe.2015.06.001.
- [16] Chang H, Wei R, O. Ge, H. Zhu. Comparison of SVP for Five Level NPC H-bridge Inverter and Traditional Five Level NPC Inverter Based On Line-Voltage Coordinate System. 18th International Conference On Electrical Machines and Systems (ICEMS),October 2015, doi: 10.1109/icems.2015.7385100
- [17] Abu-Rub H, Holtaz J, Rodriguez J, Baoning G. Medium-Voltage Multilevel Converters-State of the Art, Challenges, and Requirements in Industrial Applications. IEEE Transactions on Industrial Electronics, 2010, 57, 2581-2596. doi: 10.1109/TIE.2010.2043039.
- [18] Can H, Ickilli D, Parlak K. A New Numerical Solution Approach for the Real-Time Modeling of Photovoltaic Panels. Asia-Pacific Power and Energy Engineering Conference, Shanghai, China, 2012, pp. 1-4. doi: 10.1109/APPEEC.2012.6307160.
- [19] Can H, Ickilli D, Parlak K.S. A Comparative Study of PI and Fuzzy Controllers for Solar powered DC-DCBoost Converter. International Conference on Computational Intelligence & Networks, 2015, pp 47-51. https://doi 10.1109/cine.2015.19.
- [20] Hamrouni N, Jraidi M, Cherif A, Dhoub A. Measurements and Simulation of a PV Pumping systems parameters using MPPT and PWM control strategies. MELECON 2006 - 2006 IEEE Mediterranean Electrotechnical Conference, Malaga, Spain, 2006, 885-888. https://doi : 10.1109/melcon.2006.1653240.
- [21] Das S, Pan I, Das S, Gupta A. A novel fractional order fuzzy PID controller and its optimal time domain tuning based on integral performance indices. Engineering Applications of Artificial Intelligence, 2012, 25(2), 430-442. https://doi.org/10.1016/j.engappai.2011.10.004
- [22] Liu L, Pan F, Xue D. Variable-order fuzzy fractional PID controller. ISA Transactions, 2015, 55, 227-233. https://doi.org/10.1016/j.isatra.2014.09.012.
- [23] Shah P, Agashe S. Review of fractional PID controller. Mechatronics 2016,38, 29–41. https://doi.org/10.1016/j.mechatronics.2016.06.005
- [24] Erenturk K. Fractional-order PIλ Dμ and active disturbance rejection control of nonlinear two-mass drive system. in IEEE Transactions on Industrial Electronics, vol. 60, no. 9, pp. 3806-3813, Sept. 2013. doi: 10.1109/TIE.2012.2207660.
- [25] C.Y. Quan, Applied Fractional Calculus, In Proceedings of the American Control Conference-ACC2009, St. Louis, Missouri, USA, 2009.
- [26] Oustaloup A, Levron F, Mathieu B, Nanot FM. Frequency-band complex noninteger differentiator: characterization and synthesis. in IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 2000, 47(1), 25-39. doi: 10.1109/81.817385.
- [27] A. Oustaloup, Non-integer derivation, Edition Hermes Paris, 1995.
- [28] Das S, Pan I, Das S,Gupta A. A novel fractional order fuzzy PID controller and its optimal time domain tuning based on integral performance indices. Engineering Applications of Artificial Intelligence, 2012, 25(2), 430–42. https://doi.org/10.1016/j.engappai.2011.10.004
- [29] Sierociuk D, Macias M. Comparison of variable fractional order PID controller for different types of variableorderderivatives.Proceedings of the 14th International Carpathian Control Conference (ICCC), Rytro, Poland, 2013, 334-339. doi: 10.1109/CarpathianCC.2013.6560565.
- [30] Ostalczyk P.Variable-fractional –order discrete PID controllers. 17th International Conference on Methods & Models in Automation & Robotics (MMAR), Miedzyzdroje, Poland, 2012, 534-539. doi: 10.1109/MMAR.2012.6347829.
- [31] Stanford Encyclopedia of Philosophy, “Fuzzy logic,” 2016, Available:https://plato.stanford.edu/entries/logicfuzzy/
- [32] Boucheriette W, Moussi A, Mechgoug R, Benguesmia H. A Multilevel Inverter for Grid-Connected Photovoltaic Systems Optimized by Genetic Algorithm. Engineering Technology & Applied Science Research, 2023, 13(2), 10249–10254. https://doi.org/10.48084/etasr.5558
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-abd76341-87e2-4e01-aedc-7fb170e8f813