PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Susceptometer in soil magnetic susceptibility studies

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This work presents a method for measuring the magnetic susceptibility of soil samples based on interactions of magnetic particles contained in a tested sample with a weighed permanent magnet placed in the balance mechanical design. The MYA 2.4Y microbalance manufactured by Radwag Wagi Elektroniczne, Poland, was used to perform mass measurements. The weighing system was adjusted for mass indication using a certified mass standard, and for magnetic susceptibility indication using a certified magnetic susceptibility standard. The volume of each analysed soil sample was 3.93 cm3 and was similar to the volume and the size of the magnetic susceptibility standard. The research was carried out for 10 soil samples with a magnetic susceptibility range varying from 20 to 1600x10-8 m3 kg-1. The soil samples contained technogenic magnetic particles and particles of natural magnetite of geogenic origin. The study was performed for a field of 2 mT.
Słowa kluczowe
Rocznik
Strony
127--142
Opis fizyczny
Bibliogr. 21 poz., rys., tab., wykr., wzory
Twórcy
  • Radwag Wagi Elektroniczne, Centre for Metrology Research and Certification, Torunska 5, 26-600 Radom, Poland
  • Polish Academy of Sciences, Institute of Environmental Engineering, M. Skłodowskiej-Curie 34, 41-819 Zabrze, Poland
  • University of Technology and Humanities, Faculty of Mechanical Engineering, Department of Physics, Stasieckiego 54, 26-600 Radom, Poland
Bibliografia
  • [1] Rogula-Kozłowska, W., Majewski, G., Rogula-Kopiec, P., & Mathews, B. (2019, January). Mass concentration and chemical composition of submicron particulate matter (PMI) in the Polish urban areas. In IOP Conference Series: Earth and Environmental Science (Vol. 214, No. 1, p. 012092). IOP Publishing. https://doi.org/10.1088/1755-1315/214/1/012092
  • [2] Bourliva, A., Papadopoulou, L., Aidona, E., Giouri, K., Simeonidis, K., & Vourlias, G. (2017). Characterization and geochemistry of technogenic magnetic particles (TMPs) in contaminated industrial soils: Assessing health risk via ingestion. Geoderma, 295, 86-97. https://doi.org/10.1016/j.geoderma.2017.02.001
  • [3] Heller, F., Strzyszcz, Z., & Magiera, T. (1998). Magnetic record of industrial pollution in forest soils of Upper Silesia, Poland. Journal of Geophysical Research: Solid Earth, 103(B8). 17767-17774. https://doi.org/10.1029/98JB01667
  • [4] Lecoanet, H., Lévâque, F., & Segura, S. (1999). Magnetic susceptibility in environmental applications: comparison of field probes. Physics of the Earth and Planetary Interiors, 115(3-4), 191-204. https://doi.org/10.1016/S0031-9201(99)00066-7
  • [5] Hanesch, M., & Scholger, R. (2002). Mapping of heavy metal loadings in soils by means of magnetic susceptibility measurements. Environmental Geology, 42(8), 857-870. https://doi.org/10.1007/s00254-002-0604-1
  • [6] Wang, X. S., & Qin, Y. (2006). Use of multivariate statistical analysis to determine the relationship between the magnetic properties of urban topsoil and its metal, S, and Br content. Environmental Geology, 51(4), 509-516. https://doi.org/10.1007/s00254-006-0347-5
  • [7] Kapička, A., Petrovský, E., Fialová, H., Podrázský, V., & Dvořák, I. (2008). High resolution mapping of anthropogenic pollution in the Giant Mountains National Park using soil magnetometry. Studio Geophysica et Geodaetica, 52(2), 271. https://doi.org/10.1007/s11200-008-0018-y
  • [8] Cao, L., Appel, E., Rosier, W., & Magiera, T. (2015). Efficiency of stepwise magnetic-chemical site assessment for fly ash derived heavy metal pollution. Geophysical Journal International, 203(2), 767-775. https://doi.org/10.1093/gji/ggv318
  • [9] Hrouda, F., & Pokorný, J. (2011). Extremely high demands for measurement accuracy in precise determination of frequency-dependent magnetic susceptibility of rocks and soils. Studio Geophysica et Geodaetica, 55(4), 667-681. https://doi.org/10.1007/s11200-010-0079-6
  • [10] International Organization for Standardization. (2019). Soil Quality - Guideline tor the Screening of Soil Polluted with Toxic Elements Using Soil Magnetometry (ISO Standard No. 21226:2019). https://www.iso.org/standard/70136.html
  • [11] Magiera, T., Żogała, B., Szuszkiewicz, M., Pierwoła, J., & Szuszkiewicz, M. M. (2019). Combination of different geophysical techniques for the location of historical waste in the lzery Mountains (SW Poland). Science of the Total Environment, 682, 226-238. hnps://doi.org/10.1016/j.scitotenv.2019.05.180
  • [12] Magiera, T., Żogała, B., Łukasik, A., & Pierwoła, J. (2021). Application of different geophysical techniques to study Technosol developed on metallurgical wastes. Land Degradation & Development, 32(5), 1927-1937. https://doi.org/10.1002/ldr.3846
  • [13] International Organization for Standardization and International Electrotechnical Commission. (2018). General requirements for the competence of testing and calibration laboratories (ISO/IEC Standard No. 17025:2018).
  • [14] International Organization tor Standardization. Quality management systems - Requirements (ISO Standard No. 9001:2015). https://www.iso.org/standard/62085.html
  • [15] International Organization for Standardization. Risk management - Guidelines (ISO Standard No. 31000:2018). https://www.iso.org/standard/65694.html
  • [16] OIML R 111-1. (2004). Weights of classes E1, E2, F1, F2, M1, M1-2, M2, M2-3 and M3. Part 1: Metrological and technical requirements.
  • [17] Thompson, R., & Oldfield, F. (1986). Environmental Magnetism, Springer, London. https://doi.org/10.1007/978-94-011-8036-8
  • [18] Dearing, J. A., Dann, R. J. L., Hay, K., Lees, J. A., Loveland, P. J., Maher, B. A., & O’Grady, K. (1996). Frequency-dependent susceptibility measurements of environmental materials. Geophysical Journal International, 124(1), 228-240. https://doi.org/10.1111/j.1365-246X.1996.tb06366.x
  • [19] Magiera. T., Jabłońska, M., Strzyszcz, Z., & Rachwal, M. (2011). Morphological and mineralogical forms of technogenic magnetic particles in industrial dusts. Atmospheric Environment, 45(25), 4281-4290. https://doi.org/10.1016/j.atmosenv.2011.04.076
  • [20] Magiera, T., Górka-Kostrubiec, B., Szumiata, T., & Wawer, M. (2021). Technogenic magnetic particles from steel metallurgy and iron mining in topsoil: Indicative characteristic by magnetic parameters and Mössbauer spectra. Science of the Total Environment, 775, 145605. https://doi.org/10.1016/j.scitotenv.2021.145605
  • [21] Centre for Metrology Research and Certification - Radwag. Magnetic Susceptibility of Soil Samples Weighing Method, https://radwag.com/pdf/publikacje_new/en/magnetic-susceptibility-of-soil-samples-weighing-method/magnetic-susceptibiIity-of-soil-samples-weighing-method.html
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-abd6b0b2-a006-4521-83a2-b03426b276c3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.