PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Removal of Hardly Bio-Degradabale Organic Compounds from Wastewater by Means of Reagentless Methods

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper discusses the issue of removing persistent organic pollutants (POPs) from wastewater, especially the polycyclic organic hydrocarbons (PAHs). The results obtained in literature studies indicate that the commonly employed traditional methods of wastewater treatment are not always efficient in eliminating the hardly bio-degradable pollutants. Therefore, extensive research is being conducted on the application of efficient POPs removal technologies. One of the considered variants involves incorporating advanced oxidation processes (AOP) into the wastewater treatment systems based on the biological processes. These include the reagentless methods, e.g. the processes involving ultrasounds and hydrodynamic cavitation. On the basis of the author’s own studies conducted in a laboratory system comprising a static cavitation reactor, the possibility of applying hydrodynamic cavitation for the decomposition of PAHs was evaluated on the basis of model solutions of anthracene and phenanthrene. It was shown that the employed advanced oxidation process with hydro-cavitation has a significant impact on reducing the concentration of the considered PAHs. It was confirmed that the degradation degree of a substance depends on the intensity and the course of the cavitation process. The energy efficiency of the conducted process was analyzed as well and expressed as the ratio pertaining to the amount of the degraded compound to the electric energy supplied to the system.
Rocznik
Strony
63--71
Opis fizyczny
Bibliogr. 34 poz., rys.
Twórcy
  • Faculty of Fundamentals of Technology, Lublin University of Technology, ul. Nadbystrzycka 38, 20-618 Lublin, Poland
Bibliografia
  • 1. ICON Consultants. Pollutants in Urban Waste Water and Sewage Sludge – Final Report for DG Research, 2001, Office for Official Publications of the European Communities: Luxembourg.
  • 2. El-Shahawi M.S., Hamza A., Bashammakh A.S., Al-Saggaf W.T. 2010, An overview on the accumulation, distribution, transformations, toxicity and analytical methods for the monitoring of persistent organic pollutants, Talanta 80, 1587–1597.
  • 3. Srogi K., 2007, Monitoring of environmental exposure to polycyclic aromatic hydrocarbons: a review, Environmental Chemistry Letters, 5, 169–195.
  • 4. Maliszewska-Kordybach B., Smreczak B., Klimkowicz-Pawlas A., 2009, Concentrations, sources, and spatial distribution of individual polycyclic aromatic hydrocarbons (PAHs) in agricultural soils in the Eastern part of the EU : Poland as a case study, Science of the Total Environment, 407, 3746–3753.
  • 5. Morrison R.T., Boyd R.N., 1985, Organic Chemistry Vol 2 (in Polish), Państwowe Wydawnictwo Naukowe, Warszawa.
  • 6. Traczewska T., 2003, Biotoxicity of products of transformation of anthracene and phenanthrene in water as well as their possible removal (in Polish), Oficyna Wydawnicza Politechniki Wrocławskiej, Wrocław.
  • 7. Countway R., Dickhut R., Canuel E., 2003, Polycyclic aromatic hydrocarbon (AH) distribution and association with organic matter in surface waters of the York River, VA Estuary, Organic Geochemistry, 34, 209–224.
  • 8. Sanchez-Avila J., Bonet J., Velasco G, Lacorte S. 2009, Determination and occurrence of phthal ates, alkylphenols, bisphenol A, PBDEs, PCBs and PAHs in an industrial sewage grid discharging to a Municipal Wastewater Treatment Plant. Science of The Total Environment 407 (13), 4157–4167.
  • 9. Kamińska, G. Kudlek, E. Dudziak, M. Bohdziewicz, J. 2016, Removal of biologically active substances during mechanical-biological wastewater treatment (in Polish), Inżynieria Ekologiczna, 50, 201–209.
  • 10. Rosik-Dulewska Cz., Karwaczyńska U., Ciesielczuk T., 2009, Migration of PAHs from unsealed landfill to groundwaters (in Polish), Rocznik Ochrony Środowiska, Wydawnictwo Środowo- Pomorskiego Towarzystwa Naukowego Ochrony Środowiska, 9, 335–345.
  • 11. Paxus N. 2000, Organic Compounds in Municipal Landfill Leachates, Water Science & Technology, 42.7–8, 323–33.
  • 12. Dudzińska M., Czerwiński J., 2011, Persistent Organic Pollutants (POPs) in leachates from municipal landfills, Int. J. Environmental Engineering, 3, 253–268.
  • 13. Van Hamme J., Owen W., Singh A., 2003, Accelerated biodegradation of petroleum hydrocarbon waste, Journal of Industrial Microbiology and Biotechnology, 30, 260–270.
  • 14. Juhasz A., Naidu R. 2000, Bioremediation of high molecular weight polycyclic aromatic hydrocarbons: a review of the microbial degradation of benzo[a]pyrene, International Biodeterioration & Biodegradation, 45, 57–88.
  • 15. Smol M., Włodarczyk-Makuła M., 2011, Removal of PAHs from wastewater in the physical and chemical processes (in Polish), Zeszyty Naukowe. Inżynieria Środowiska/ Uniwersytet Zielonogórski, 141(21), 87 – 97.
  • 16. Beltran F.J., Ovejero G., Garcia-Araya J., Rivas J. 1995, Oxidation of Polynuclear Aromatic Hydrocarbons in Water. 2. UV Radiation and Ozonation in the Presence of UV Radiation, Industrial & Engineering Chemistry Research, 34(5), 1607–1615.
  • 17. Lin M., Ning X., An T. 2016, Degradation of polycyclic aromatic hydrocarbons (PAHs) in textile dyeing sludge with ultra-sound and Fenton processes: Effect of system parameters and synergistic effect study, Journal of Hazardous Materials, 307, 7–16.
  • 18. Ledakowicz S., Miller J., Olejnik D., 2001, Oxidation of PAHs in water solution by ozone combined with ultrafiolet radiation, International Journal of Photoenergy, 3, 95–101.
  • 19. Tao Y., Cai J., Huai X. 2016, Application of Hydrodynamic Cavitation to Wastewater Treatment, Chemical Engineering & Technology, 39(8), 1363–1376.
  • 20. Rajoriya S., Carpenter J., Saharan, V.K. 2016, Hydrodynamic cavitation: an advanced oxidation process for the degradation of bio-refractory pollutants, Reviews in Chemical Engineering, 32(4), 379–411.
  • 21. Dular M., Griessler-Bulc T., Gutierrez-Aguirre I. 2016, Use of hydrodynamic cavitation in (waste) water treatment, Ultrasonics Sonochemistry, 29, 577–588.
  • 22. Gogate P.R., Patil P.N. 2015, Combined treatment technology based on synergism between hydrodynamic cavitation and advanced oxidation processes, Ultrasonics Sonochemistry, 25, 60–69.
  • 23. Patil A.L., Patil P.N., Gogate P.R. 2014, Degradation of imidacloprid containing wastewaters using ultrasound based treatment strategies, Ultrasonics Sonochemistry, 21(5), 1778–1786.
  • 24. Psillakis E., Goula G., Kalogerakis N., Mantzavinos D., 2004, Degradation of polycyclic aromatic hydrocarbons in aqueous solutions by ultrasonic irradiation, Journal of Hazardous Materials, B108, 95–102.
  • 25. Sponza D.T., Oztekin R., 2010, Removals of PAHs and acute toxicity via sonication in a petrochemical industry wastewater, Chemical Engineering Journal, 162, 142–150.
  • 26. Arrojo S., Neron C., Benito Y., 2007, Application of salicylic acid dosimetry to evaluate hydrodynamic cavitation as an advanced oxidation process, Ultrasonics Sonochemistry, 14, 343–349.
  • 27. Litvinienko A., Nekroz A., Łukasik K., 2005, Technological application of hydrodynamic cavitation – experiences and perspectives (in Polish), Lubelskie Towarzystwo Naukowe, Lublin.
  • 28. Szulzyk-Cieplak J., Ozonek J. 2013, Research on Impact of Selected Parameters of Hydrodynamic Cavitation System on the Anthracene and Phenanthrene Degradation Degree in the Cavitating Liquid Environment, Rocznik Ochrona Srodowiska, 15, 996–1010.
  • 29. Szulzyk-Cieplak J., Ozonek J. 2013, Study of the process of phenanthrene degradation in a cavitated liquid environment, Chemik, 67(10), 1003–1010.
  • 30. Cerniglia CE. 1984, Microbial metabolism of polycyclic aromatic hydrocarbons, Adv Appl Microbiol., 30, 31–71.
  • 31. Puglisi E., Cappa F., Fragoulis G., Trevisan M., 2007, Bioavalibility and degradation of phenanthrene In kompost amended soils, Chemposphere, 67, 548–556.
  • 32. Psillakis E., Goula G., Kalogerakis N., Mantzavinos D., 2004, Degradation of polycyclic aromatic hydrocarbons in aqueous solutions by ultrasonic irradiation, Journal of Hazardous Materials, B108, 95–102.
  • 33. Kanthale P.M., Gogate P.R., Pandit A.B., Wilhelm A.M., 2005, Dynamics of cavitational bubbles and design of a hydrodynamic cavitational reactor: cluster approach, Ultrasonics Sonochemistry, 12, 441–452.
  • 34. Arrojo S., Benito Y., 2008, A theoretical study of hydrodynamic cavitation, Ultrasonics Sonochemistry, 15, 203–211.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-abcf8e08-eddd-4217-9003-034fa6d4f348
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.