PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Aqueous biological graphene based formulations for ink-jet printing

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of the study was to produce heterophasic graphene nanoplatelets based formulation designed for ink-jet printing and biomedical applications. The compositions should meet two conditions: should be cytocompatible and have the rheological properties that allow to apply it with ink-jet printing technique. In view of the above conditions, the selection of suspensions components, such as binder, solvent and surfactants was performed. In the first stage of the research the homogeneity of the dispersion of nanoplatelets and their sedimentation behaviour in diverse solutions were tested. Subsequently, the cytotoxicity of each ink on human mesenchymal stem cells was examined using the Alamar Blue Test. At the same time the rheology of the resulting suspensions was tested. As a result of these tests the best ink composition was elaborated: water, polyethylene glycol, graphene nanoplatelets and the surfactant from DuPont company.
Rocznik
Strony
46--52
Opis fizyczny
Bibliogr. 27 poz., rys., tab.
Twórcy
  • Warsaw University of Technology, Faculty of Mechatronics, Andrzeja Boboli 8, 02-525 Warsaw, Poland
  • Institute of Electronic Materials Technology, Wólczyńska 133, 01-919 Warsaw, Poland
autor
  • Medical University of Warsaw, Department of Histology and Embryology, Centre for Biostructure Research, Chałubińskiego 5, 02-004 Warsaw, Poland
  • Centre for Preclinical Research and Technology, Banacha 1B, 02-097 Warsaw, Poland
  • Postgraduate School of Molecular Medicine, Żwirki i Wigury 61, 02-091 Warsaw, Poland
  • Warsaw University of Technology, Faculty of Mechatronics, Andrzeja Boboli 8, 02-525 Warsaw, Poland
autor
  • Warsaw University of Technology, Faculty of Mechatronics, Andrzeja Boboli 8, 02-525 Warsaw, Poland
  • Institute of Electronic Materials Technology, Wólczyńska 133, 01-919 Warsaw, Poland
  • Medical University of Warsaw, Department of Histology and Embryology, Centre for Biostructure Research, Chałubińskiego 5, 02-004 Warsaw, Poland
  • Centre for Preclinical Research and Technology, Banacha 1B, 02-097 Warsaw, Poland
  • Medical University of Warsaw, Department of Histology and Embryology, Centre for Biostructure Research, Chałubińskiego 5, 02-004 Warsaw, Poland
  • Centre for Preclinical Research and Technology, Banacha 1B, 02-097 Warsaw, Poland
  • Warsaw University of Technology, Faculty of Mechatronics, Andrzeja Boboli 8, 02-525 Warsaw, Poland
  • Institute of Electronic Materials Technology, Wólczyńska 133, 01-919 Warsaw, Poland
Bibliografia
  • 1. Wojtoniszak, M., Chen, X., Kalenczuk, R.J., Wajda, A., Łapczuk, J., Kurzewski, M., Drozdzik, M., Chu, P.K. & Borowiak-Palen, E. (2012). Synthesis, dispersion, and cytocompatibility of graphene oxide and reduced graphene oxide. Colloids and Surfaces B: Biointerfaces 89, 79–85. DOI: 10.1016/j.colsurfb.2011.08.026.
  • 2. Huang, L., Huang, Y., Liang, J., Wan, X. & Chen, Y. (2011). Graphene-Based Conducting Inks for Direct Inkjet Printing of Flexible Conductive Patterns and Their Applications in Electric Circuits and Chemical Sensors. Nano Res. 4(7), 675–684. DOI: 10.1007/s12274-011-0123-z.
  • 3. Jangho, K., Kyoung, S.C., Yeonju, K., Ki-Tack, L., Hoon, S., Yensil, P., Deok-Ho, K., Pill-Hoon, C., Chong-Su, C., Soo, Y.K., Yun-Hoon, C. & Jong, H.C. (2013). Bioactive effects of graphene oxide cell culture substratum on structure and function of human adipose-derived stem cells. J. Biomed. Mater. Res. Part A. 101(12), 3520–3530. DOI: 10.1002/jbm.a.34659.
  • 4. Carrow, J.K. & Gaharwar, A.K. (2015). Bioinspired Polymeric Nanocomposites for Regenerative Medicine. Macromol. Chem. Phys. 216(3), 248−264. DOI: 10.1002/macp.201400427.
  • 5. Xu, Y., Liu, Z., Zhang, X., Wang, Y., Tian, J., Huang, Y., Ma, Y., Zhang, X. & Chen, Y. (2009). A Graphene Hybrid Material Covalently Functionalized with Porphyrin: Synthesis and Optical Limiting Property. Adv. Mater. 21(12), 1275–1279. DOI: 10.1002/adma.200801617.
  • 6. Huang, S.J., et al. (2013). Adipose-derived stem cells: isolation, characterization, and differentiation potential. Cell Transplant 22(4), 701–9. DOI: 10.3727/096368912X655127.
  • 7. Yi, T. & Song, S.U. (2012). Immunomodulatory properties of mesenchymal stem cells and their therapeutic applications Arch. Pharm. Res. 35(2), 213–221. DOI: 10.1007/s12272-012-0202-z.
  • 8. Kapur, S.K. & Katz, A.J. (2013). Review of the adipose derived stem cell secretome. Biochimie 95(12), 2222–2228. DOI: 10.1016/j.biochi.2013.06.001.
  • 9. Zhanga, Y., Nayakb, T.R., Hongb, H. & Caia, W. (2012) Graphene: a versatile nanoplatform for biomedical applications. Nanoscale 4, 3833–3842. DOI: 10.1039/C2NR31040F.
  • 10. Li, N., Zhang, Q., Gao, S., Song, Q., Huang, R., Wang, L., Liu, L., Dai, J., Tang, M. & Cheng, G. (2013). Three-dimensional graphene foam as a biocompatible and conductive scaffold for neural stem cells. Sci. Rep. 3, 1604, DOI: 10.1038/srep01604.
  • 11. Sanchez, V.C., Jachak, A., Hurt, R.H. & Kane, A.B. (2012). Biological Interactions of Graphene-Family Nanomaterials – An Interdisciplinary Review. Chem. Res. Toxicol 25(1), 15–34. DOI: 10.1021/tx200339h.
  • 12. Akhavan, O., Ghaderi, E. & Akhavan, A. (2012). Size-dependent genotoxicity of graphene nanoplatelets in human stem cells. Biomaterials 33(32). DOI: 10.1016/j.biomaterials. 2012.07.040.
  • 13. Kim, T.H., Shah, S., Yang, L., Yin, P.T., Hossain, M.K., Conley, B., Choi, J.W. & Lee, K.B. (2015) Controlling Differentiation of Adipose-Derived Stem Cells Using Combinatorial Graphene Hybrid-Pattern Arrays. ACS Nano 9(4), 3780–3790. DOI: 10.1021/nn5066028.
  • 14. Woo, K., Jang, D. Kim, Y. & Moonn, J. (2013). Relationship between printability and rheological behavior of ink-jet conductive inks. Ceramics Inter. 39(6), 7015–7021. DOI: 10.1016/j.ceramint.2013.02.039.
  • 15. Xu, Y. Hennig, I., Freyberg, D., Strudwick, A.J., Schwab, M.G., Weitz, T. & Cha, K.C. (2014). Inkjet-printed energy storage device using graphene/polyaniline inks. J. Power Sour. 248, 483–488. DOI: 10.1016/j.jpowsour.2013.09.096.
  • 16. Ferris, C. (2013). Bio-inks for drop-on-demand cell printing, University of Wollongong, from research online on the World Wide Web: http://ro.uow.edu.au/theses/3875/
  • 17. Gamota, D., Brazis, P., Kalyanasundaram, K. & Zhang, J. (2004). Printed Organic and Molecular Electronics. Springer Science+Business Media, LLC, from SpringerLink.
  • 18. Kamyshny, A., Steinke, J. & Magdassi S. (2011). Metalbased Inkjet Inks for Printed Electronics, The Open Appl. Phys. J. 4, 19–36. DOI: 1874-1835/11.
  • 19. Nelo, M., Sowpati, A.K., Palukuru, V.K., Juuti, J. & Jantunen, H. (2010). Formulation of Screen Printable Cobalt Nanoparticle Ink for High Frequency Applications. Prog. Electromag. Res. 110. DOI: 10.2528/PIER10102101.
  • 20. Li, J., Ye, F., Vaziri, S., Muhammed, M., Lemme, M.C. & Östling, M. (2013). Efficient Inkjet Printing of Graphene. Adv. Mater. 25(29), 3985–3992. DOI: 0.1002/adma.201300361.
  • 21. Torrisi, F., Hasan, T., Wu, W., Sun, Z., Lombardo, A., Kulmala, T.S., Hsieh, G.W., Jung, S., Bonaccorso, F., Paul, P.J., Chu, D. & Ferrari, A.C. (2012). Inkjet printed graphene electronics. ACS Nano 6(4), 2992–3006, DOI: 10.1021/nn2044609.
  • 22. Ferris, C. (2013), Bio-inks for drop-on-demand cell printing, University of Wollongong.
  • 23. Zuk, P.A., et al. (2001). Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng. 7(2), 211–228. DOI: 10.1089/107632701300062859.
  • 24. Sheng-Zhen, Z. & Bao-Hang, H. (2009). Aqueous Dispersion of Graphene Sheets Stabilized by Pluronic Copolymers: Formation of Supramolecular Hydrogel J. Phys. Chem. C. 113(31), 13651–13657. DOI: 10.1021/jp9035887.
  • 25. Biondi, O., Motta, S. & Mosesso, P. (2002). Low molecular weight polyethylene glycol induces chromosome aberrations in Chinese hamster cells cultured in vitro. Mutagenesis 17(3), 261–264. DOI: 10.1093/mutage/17.3.261.
  • 26. Kyoohee, W., Daehwan, J., Youngwoo, K. & Jooho, M. Relationship between printability and rheological behavior of ink-jet conductive inks. Ceramics Inter. (2013), Vol. 39, 7015–7021. DOI: 10.1016/j.ceramint.2013.02.039.
  • 27. Ihalainen, P., Määttänen, A. & Sandler, N. (2015). Printing technologies for biomolecule and cell-based applications. Inter. J. Pharmac. DOI: 10.1016/j.ijpharm.2015.02.033.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-abceeb01-05f0-4e98-9508-d810c9f57743
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.