PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Constant switching frequency predictive control scheme for three-level inverter-fed sensorless induction motor drive

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents a novel model predictive flux control (MPFC) scheme for three-level inverter-fed sensorless induction motor drive operated in a wide speed region, including field weakening. The novelty of the proposed drive lies in combining in one system a number of new solutions providing important features, among which are: very high dynamics, constant switching frequency, no need to adjust weighting factors in the predictive cost function, adaptive speed and parameter (stator resistance, main inductance) estimation. The theoretical principles of the optimal switching sequence predictive stator flux control (OSS-MPFC) method used are also discussed. The method guarantees constant switching frequency operation of a three-level inverter. For speed estimation, a compensated model reference adaptive system (C-MRAS) was adopted while for IM parameters estimation a Q-MRAS was developed. Simulation and experimental results measured on a 50 kW drive that illustrates operation and performances of the system are presented. The proposed novel solution of a predictive controlled IM drive presents an attractive and complete algorithm/system which only requires the knowledge of nominal IM parameters for proper operation.
Rocznik
Strony
1057--1068
Opis fizyczny
Bibliogr. 37 poz., rys., tab.
Twórcy
autor
  • Electrotechnical Institute, ul. Pożaryskiego 28, 04-703 Warsaw, Poland
  • Warsaw University of Technology, ul. Koszykowa 75, 00-662 Warsaw, Poland
  • Electrotechnical Institute, ul. Pożaryskiego 28, 04-703 Warsaw, Poland
  • Warsaw University of Technology, ul. Koszykowa 75, 00-662 Warsaw, Poland
Bibliografia
  • [1] P. Cortés, M.P. Kazmierkowski, R.M. Kennel, D.E. Quevedo, and J. Rodriguez, "Predictive control in power electronics and drives," IEEE Trans. Ind. Electron. 55(12), 4312-4324 (2008), doi: 10.1109/TIE.2008.2007480.
  • [2] S. Vazquez, J. Rodriguez, M. Rivera, L.G. Franquelo, and M. Norambuena, "Model Predictive Control for Power Converters and Drives: Advances and Trends," IEEE Trans. Ind. Electron. 64(2), 935-947 (2017), doi: 10.1109/TIE.2016.2625238.
  • [3] F. Wang, S. Li, X. Mei, W. Xie, J. Rodríguez, and R. M. Kennel, "Model-based predictive direct control strategies for electrical drives: An experimental evaluation of PTC and PCC methods," IEEE Trans. Incl. Informatics 11(3), 671-681 (2015), doi: 10.1109/TH.2015.2423154.
  • [4] F. Wang, Z. Zhang, A. Davari, J. Rodríguez, and R. Kennel, "An experimental assessment of finite-state Predictive Torque Control for electrical drives by considering different online-optimization methods," Control Eng. Pract. 31, 1-8 (2014), doi: 10.1016/j.conengprac.2014.06.004.
  • [5] Y. Zhang, B. Zhang, H. Yang, M. Norambuena, and J. Rodriguez, "Generalized sequential model predictive control of im drives with field-weakening ability," IEEE Trans. Power Electron. 34(9), 8944-8955 (2019), doi: 10.1109/TPEL.2018.2886206.
  • [6] C. lonescu and D. Copot, "Hands-on MPC tuning for industrial applications," Bull. Pol. Ac.: Tech. 67(5), 925-945 (2019), doi: 10.24425/bpasts.2019.130877.
  • [7] F. Donoso, A. Mora, R. Cardenas, A. Angulo, D. Saez, and M. Rivera, "Finite-Set Model-Predictive Control Strategies for a 3L-NPC Inverter Operating with Fixed Switching Frequency," IEEE Trans. Ind. Electron. 65(5) (2018), doi: 10.1109/TIE.2017.2760840.
  • [8] Y. Li, Z. Zhang, and M. P. Kaźmierkowski, "Cascaded Predictive Control for Three-Level NPC Power Converter Fed Induction Machine Drives Without Weighting Factors," in Proceedings - 2018 IEEE International Power Electronics and Application Conference and Exposition, PEAC 2018, 2018, doi: 10.1109/PEAC.2018.8590301.
  • [9] Y. Zhang and Y. Bai, "Model predictive control of three-level inverter-fed induction motor drives with switching frequency reduction," in Proceedings IECON 2017 - 43rd Annual Conference of the IEEE Industrial Electronics Society, 2017 2017-Janua, pp. 6336-6341, doi: 10.1109/IECON.2017.8217103.
  • [10] Y. Zhang, Y. Bai, H. Yang, and B. Zhang, "Low Switching Frequency Model Predictive Control of Three-Level Inverter-Fed im Drives with Speed-Sensorless and Field-Weakening Operations," IEEE Trans. Ind. Electron. 66(6), 4262-4272 (2019), doi: 10.1109/TIE.2018.2868014.
  • [11] M. Habibullah, D.D.C. Lu, D. Xiao, and M. F. Rahman, "Finite-State Predictive Torque Control of Induction Motor Supplied from a Three-Level NPC Voltage Source Inverter," IEEE Trans. Power Electron. 32(1), 479-489 (2017), doi: 10.1109/TPEL.2016.2522977.
  • [12] S. Aurtenechea, M.A. Rodriguez, E. Oyarbide, and J.R. Torrealday, "Predictive direct power control of MV-grid-connected two-level and, three-level npc converters: experimental results," in 2007 European Conference on Power Electronics and Applications, 2007, pp. 1-10, doi: 10.1109/EPE.2007.4417305.
  • [13] F. Wang et al., "Encoderless Finite-State Predictive Torque Control for Induction Machine With a Compensated MRAS," IEEE Trans. Ind. Informatics 10(2), 1097-1105 (2014), doi: 10.1109/TH.2013.2287395.
  • [14] L. Yan, M. Dou, H. Zhang, and Z. Hua, "Speed-Sensorless Dual Reference Frame Predictive Torque Control for Induction Machines," IEEE Trans. Power Electron. 34(12), 12285-12295 (2019), doi: 10.1109/TPEL.2019.2904542.
  • [15] D. Stando, M.P. Kazmierkowski, and P. Chudzik, "Sensorless predictive torque control of induction motor drive operating in wide speed range - Simulation study," in 16th International Power Electronics and Motion Control Conference and Exposition, PEMC 2014, 2014, pp. 521-526, doi: 10.1109/EPEPEMC.2014.6980546.
  • [16] M. Habibullah, D.D.C. Lu, D. Xiao, J. E. Fletcher, and M.F. Rahman, "Predictive Torque Control of Induction Motor Sensorless Drive Fed by a 3L-NPC Inverter," IEEE Trans. Ind. Informatics 13(1), 60-70 (2017), doi: 10.1109/TH.2016.2603922.
  • [17] H. Abu-Rub, D. Stando, and M.P. Kazmierkowski, "Simple speed sensorless DTC-SVM scheme for induction motor drives," Bull. Pol. Ac.: Tech. 61(2), 301-307 (2013), doi: 10.2478/bpasts-2013-0028.
  • [18] D. Stando, M.P. Kaźmierkowski, T. Orlowska-Kowalska, and M. Dybkowski, "Three selected stator flux vector estimation algorithms for rotor-cage induction motors | Bezczujnikowe sterowanie falownikowego napędu indukcyjnego dla pojazdow elektrycznych w szerokim zakresie prędkości," Prz. Elektrotechniczny 87(3), 307-312 (2011).
  • [19] M. Turzyński and P.J. Chrzan, "Resonant DC link inverters for AC motor drive systems - critical evaluation," Bull. Pol. Ac.: Tech. 67(2), 241-252 (2019), doi: 10.24425/bpas.2019.128600.
  • [20] D. Stando, Predictive Control of 3-Level Inverter-Fed Sensorless Induction Motor Drive, PhD Thesis. Warsaw: Warsaw University of Technology, Faculty of Electrical Engineering, 2018.
  • [21] M.P. Kazmierkowski, R. Krishnan, and F. Blaabjerg, Control in Power Electronics: Selected Problems. 2003.
  • [22] M.P. Kazmierkowski and H. Tunia, Automatic Control of Converter-Fed Drives. Amsterdam-London-New York-Tokyo, Warsaw: Elsevier Ltd, 1994.
  • [23] C. Schauder, “Adaptive Speed Identification for Vector Control of Induction Motors Without Rotational Transducers,” IEEE Trans. Ind. Appl. 28(5), 1054–1061 (1992), doi: 10.1109/28.158829.
  • [24] G. Tarchala, M. Dybkowski, and T. Orlowska-Kowalska, “Analysis of the chosen speed and flux estimators for sensorless induction motor drive,” 2011 IEEE International Symposium on Industrial Electronics, Gdansk, 2011, pp. 525‒530, doi: 10.1109/ISIE.2011.5984213.
  • [25] G. Tarchala and T. Orlowska-Kowalska, “Equivalent-Signal-Based Sliding Mode Speed MRAS-Type Estimator for Induction Motor Drive Stable in the Regenerating Mode,” IEEE Trans. Ind. Electron. 65(9), 6936–6947 (2018), doi: 10.1109/TIE.2018.2795518.
  • [26] T. Orlowska-Kowalska and M. Dybkowski, “Stator-current-based MRAS estimator for a wide range speed-sensorless induction-motor drive,” IEEE Trans. Ind. Electron. 57(4), 1296–1308 (2010), doi: 10.1109/TIE.2009.2031134.
  • [27] A.V. Ravi Teja, C. Chakraborty, S. Maiti, and Y. Hori, “A new model reference adaptive controller for four quadrant vector controlled induction motor drives,” IEEE Trans. Ind. Electron. 59(10), 3757–3767 (2012), doi: 10.1109/TIE.2011.2164769.
  • [28] S. Maiti, V. Verma, C. Chakraborty, and Y. Hori, “An adaptive speed sensorless induction motor drive with artificial neural network for stability enhancement,” IEEE Trans. Ind. Informatics 8(4), 757–766 (2012), doi: 10.1109/TII.2012.2210229.
  • [29] I. Benlaloui, S. Drid, L. Chrifi-Alaoui, and M. Ouriagli, “Implementation of a new MRAS speed sensorless vector control of induction machine,” IEEE Trans. Energy Convers. 30(2), 588–595 (2015), doi: 10.1109/TEC.2014.2366473.
  • [30] L. Zhen and L. Xu, “Sensorless field orientation control of induction machines based on a mutual MRAS scheme,” IEEE Trans. Ind. Electron. 45(5), 824–831 (1998), doi: 10.1109/41.720340.
  • [31] A.V. Ravi Teja, V. Verma, and C. Chakraborty, “A New Formulation of Reactive-Power-Based Model Reference Adaptive System for Sensorless Induction Motor Drive,” IEEE Trans. Ind. Electron. 62(11), 6797–6808 (2015), doi: 10.1109/TIE.2015.2432105.
  • [32] S.A. Davari, F. Wang, and R.M. Kennel, “Robust Deadbeat Control of an Induction Motor by Stable MRAS Speed and Stator Estimation,” IEEE Trans. Ind. Informatics 14(1), 200–209 (2018), doi: 10.1109/TII.2017.2756900.
  • [33] V.V. Vasić and S.N. Vukosavić, “Sensorless MRAS-based induction motor control with parallel speed and stator resistance estimation,” Eur. Trans. Electr. Power 12(2), 135–139 (2002), doi: 10.1002/etep.4450120208.
  • [34] M. Depenbrock, “Direct Self-Control (DSC) of Inverter-Fed Induction Machine,” IEEE Trans. Power Electron. 3(4), 420–429 (1988), doi: 10.1109/63.17963.
  • [35] S.M. Gadoue, D. Giaouris, and J. W. Finch, “Sensorless control of induction motor drives at very low and zero speeds using neural network flux observers,” IEEE Trans. Ind. Electron. 56(8), 3029–3039 (2009), doi: 10.1109/TIE.2009.2024665.
  • [36] M. Dybkowski and T. Orlowska-Kowalska, “Low-speed performance of the stator current-based MRAS estimator with FL controller in the sensorless induction motor drive,” in 11th International Conference on Optimization of Electrical and Electronic Equipment, OPTIM 2008, 2008, pp. 75–80, doi: 10.1109/OPTIM.2008.4602460.
  • [37] G.S. Buja and M.P. Kazmierkowski, “Direct torque control of PWM inverter-fed AC motors – A survey,” IEEE Trans. Ind. Electron. 51(4), 744–757 (2004), doi: 10.1109/TIE.2004.831717.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-abce703f-0f5e-45b5-8699-c5f657913bfc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.