PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of hot deformation and isothermal holding temperature on retained austenite characteristics in 3-5% Mn multiphase steels

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents stress-strain characteristics recorded during the four-step compression of axisymmetric samples in the Gleeble thermomechanical simulator. The hot deformability of three steels with Mn concentrations of 3%, 4% and 5% was compared. The analysis of the influence of plastic deformation and Mn content on the microstructure of alloys, and in particular, on a fraction and morphological features of the retained austenite, was performed. The proportion of the retained austenite was determined by the X-ray diffraction method. It was found that the content of Mn in the range from 3% to 5% does not have a significant impact on the high-temperature resistance of the steel during compression tests, but it has a significant influence on the microstructure of the steel and the fraction of retained austenite. The optimal conditions for maximizing the proportion of retained austenite were obtained at the temperature of 400 °C, and it decreased with increasing Mn concentration in the steel. It has been shown that it is related to the redistribution of carbon from the remaining austenite fraction with an increase in the manganese content. The mechanical properties were determined on the basis of hardness measurements.
Rocznik
Strony
art. no. e144611
Opis fizyczny
Bibliogr. 49 poz., rys., tab.
Twórcy
autor
  • Silesian University of Technology, Faculty of Mechanical Engineering, Department of Engineering Materials and Biomaterials, ul. Konarskiego 18a, 44-100 Gliwice, Poland
autor
  • Silesian University of Technology, Faculty of Mechanical Engineering, Department of Engineering Materials and Biomaterials, ul. Konarskiego 18a, 44-100 Gliwice, Poland
  • Silesian University of Technology, Faculty of Mechanical Engineering, Department of Engineering Materials and Biomaterials, ul. Konarskiego 18a, 44-100 Gliwice, Poland
Bibliografia
  • [1] G. Liu, J. Wang, Y. Ji, R. Hao, H. Li, and Z. Jiang, “Hot deformation behavior and microstructure evolution of Fe–5Mn–3Al–0.1C high-strength lightweight steel for automobiles,” Materials, vol. 14, p. 2478, 2021, doi: 10.3390/ma14102478.
  • [2] S. Chen, R. Rana, A. Haldar, and R. Ray, “Current state of Fe-Mn-Al-C low density steels,” Prog. Mater. Sci., vol. 89, pp. 345–391, 2017, doi: 10.1016/j.pmatsci.2017.05.002.
  • [3] Ch. Tong et al., “Investigation of austenitizing behaviour of medium-Mn steel in the hot-stamping heating process,” J. Mater. Process. Technol., vol. 297, p. 117269, 2021, doi: 10.1016/j.jmatprotec.2021.117269.
  • [4] J. Zhao and Z. Jaing, “Thermomechanical processing of advanced high strength steels,” Prog. Mater. Sci., vol. 94, pp. 174–242, 2018, doi: 10.1016/j.pmatsci.2018.01.006.
  • [5] A. Grajcar, P. Skrzypczyk, and D. Woźniak, “Thermomechanically rolled medium-Mn steels containing retained austenite,” Arch. Metall. Mater., vol. 59, no. 4, pp. 1691–1697, 2014, doi: 10.2478/amm-2014-0286.
  • [6] R. Rana, P.J. Gibbs, E. De Moor, J.G. Speer, and D.K. Matlock, “A composite modeling analysis of the deformation behavior of medium manganese steels,” Steel Res. Int., vol. 86, pp. 345–391, 2017, doi: 10.1002/srin.201400577.
  • [7] D. Bubliková, H. Jirková, K. Rubešová, J. Vollkamnová, and M. Graf, “Effects of cooling rate on the volume fraction of retained austenite in forgings from high-strength Mn-Si steels,” Acta Metall. Slovaca, vol. 25, no. 2, pp. 93–100, 2019, doi: 10.12776/ams.v25i2.1266.
  • [8] A. Grajcar, W. Zalecki, W. Burian, and A. Kozłowska, “Phase Equilibrium and Austenite Decomposition in Advanced High-Strength Medium-Mn Bainitic Steels,” Metals, vol. 6, no. 10, p. 248, 2016, doi: 10.3390/met6100248.
  • [9] Y. Wang, M. Zhang and X. Sun, “Investigation on High Temperature Compression Deformation Behavior of 0.2C7Mn Steel,” Procedia Manuf., vol. 37, pp. 327–334, 2019, doi: 10.1016/j.promfg.2019.12.055.
  • [10] R. Zhang,W. Cao, Z. Peng, J. Shi, H. Dong, and Ch. Huang, “Intercritical rolling induced ultrafine microstructure and excellent mechanical properties of the medium-Mn steel,” Mater. Sci. Eng. A, vol. 583, pp. 84–88, 2013, doi: 10.1016/j.msea.2013.06067.
  • [11] J. Li, R. Song, Y. Wang, and N. Zhou, “Decreasing yield ratio of 70 GPa.% grade hot-rolled medium Mn steel by weakening multi-strengthening effects,” Vaccum, vol. 170, p. 108972, 2019, doi: 10.1016/j.vacuum.2019.108972.
  • [12] K. Steineder, R. Schneider, D. Krizal, C. Beal, and Ch. Sommitsch, “Comparative investigation of phase transformation behavior as a function of annealing temperature and cooling rate of two medium-Mn steels,” Steel Res. Int., vol. 86, pp. 1179–1186, 2015, doi: 10.1002/srin.201400551.
  • [13] A. Zieli´nski, R. Wersta, and M. Sroka, “Analysis of the precipitation process of secondary phases after long-term ageing of S304H steel,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 69, no. 5, p. e137520, 2021, doi: 10.24425/bpasts.2021.137520.
  • [14] M. Soleimani, A. Kalhor, and H. Mirzadeh, “Transformationinduced plasticity (TRIP) in advanced steels: a review,” Mater. Sci. Eng. A, vol. 795, p. 140023, 2020, doi: 10.1016/j.msea.2020.140023.
  • [15] B. He, H. Luo and M. Huang, “Experimental investigation on a novel medium Mn combining transformation-induced plasticity and twinning-induced plasticity effects,” Int. J. Plast., vol. 78, pp. 173–186, 2016, doi: 10.1016/j.ijplas.2015.11.004.
  • [16] H. Luo and H. Dong, “New ultra-high Mn-alloyed TRIP steels with improved formability manufactured by intercritical annealing,” Mater. Sci. Eng. A, vol. 626, pp. 207–212, 2015, doi: 10.1016/j.msea.2014.12.049.
  • [17] M. Opiela, G. Fojt-Dymara, A. Grajcar, andW. Borek, “Effect of grain size on the microstructure and strain hardening behavior of solution heat-treated low-C high-Mn steel,” Materials, vol. 13, p. 1489, 2020, doi: 10.3390/ma13071489.
  • [18] A. Śmiglewicz, M. Jabłońska, M. Moćko, K. Kowalczyk, and E. Hadasik, “Properties and structure of X30MnAlSi26-4-3 high strength steel subjected to dynamic compression processes,” Arch. Metall. Mater., vol. 62, no. 4, pp. 2255–2260, 2017, doi: 10.1515/amm-2017-0332.
  • [19] W. Bleck, “New insights into the properties of high-manganese steel,” Int. J. Miner. Metall. Mater., vol. 28, pp. 782–796, 2021, doi: 10.1007/s12613-020-2166-1.
  • [20] Y. Shen, C. Qiu, L.Wang, X. Sun, X. Zhao, and L. Zuo, “Effect of cold rolling on microstructure and mechanical properties of Fe-30Mn-3Si-4Al-0.093C TWIP steel,” Mater. Sci. Eng. A, vol. 561, pp. 329–337, 2013, doi: 10.1016/j.msea.2012.10.020.
  • [21] L. Sozańska-J˛edrasik, W. Borek, and J. Mazurkiewicz, “Mechanisms of plastic deformation in light high-manganese steel of TRIPLEX type,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 69, no. 5, p. e137412, 2021, doi: 10.24425/bpasts.2021.137412.
  • [22] B. De Cooman, Y. Estrin, and S.K. Kim, “Twinning-induced plasticity (TWIP) steels,” Acta Mater., vol. 142, pp. 283–362, 2018, doi: 10.1016/j.actamat.2017.06.046.
  • [23] A. Grajcar, P. Skrzypczyk, and A. Kozłowska, “Effects of temperature and time of isothermal holding on retained austenite stability in medium-Mn steels,” Appl. Sci., vol. 8, p. 2156, 2018, doi: 10.3390/app8112156.
  • [24] S-J. Lee, S. Lee, and B. De Cooman, “Mn partitioning during the intercritical annealing of ultrafine-grained 6% Mn transformation-induced plasticity steel,” Scr. Mater., vol. 64, no. 7, pp. 649–652, 2011, doi: 10.1016/j.scriptamat.2010.12.012.
  • [25] H. Kamoutsi, E. Gioti, G.N. Haidemenopoulos, Z. Cai, and H. Ding, “Kinetic of solute partitioning during intercritical annealing of a medium-Mn steel,” Metall. Mater. Trans. A, vol. 46, no. 11, pp. 4841–4846, 2014, doi: 10.1007/s11661-015-3118-7.
  • [26] R.A. Mesquita, R. Schneider, K. Steineder, L. Samek, and E. Arenholz, “On the stability of a new quality of twinning induced plasticity steel, exploring new ranges of Mn and C,” Metall. Mater. Trans. A, vol. 44, no. 9, pp. 4015–4019, 2013, doi: 10.1007/s11661-013-1741-8.
  • [27] E.I. Poliak and D. Bhattacharya, “Aspects of thermomechanical processing of 3rd generation advanced high strength steels,” Mater. Sci. Forum, vol. 783–786, pp. 3–8, 2014, doi: 10.4028/www.scientific.net/MSF.783.786.3.
  • [28] K. Sugimoto, H. Tanino, and J. Kobayashi, “A composite modeling analysis of the deformation behavior of medium manganese steels,” Metals, vol. 11, p. 1371, 2021, doi: 10.3390/met11091371.
  • [29] R. Rana, S. Chen, A. Haldar, and S. Das, “Mechanical properties of a bainitic steel producible by hot rolling,” Arch. Metall. Mater., vol. 4, pp. 2331–2338, 2017, doi: 101515/amm-2017-0342.
  • [30] R. Ranjan, H. Beladi, S.B. Singh, and P.D. Hodgson, “Thermomechanical processing of TRIP-aided steels,” Metall. Mater. Trans. A, vol. 46, pp. 3232–3247, 2015, doi: 10.1007/s11661-015-2885-5.
  • [31] J. Chen, M. Lv, S. Tang, Z. Liu, and G. Wang, “Correlation between mechanical properties and retained austenite characteristics in low-carbon medium manganese alloyed steel plate,” Mater. Charact., vol. 106, pp. 108–111, 2015, doi: 10.1016/j.matchar.2015.05.026.
  • [32] B. Sun et al., “Microstructural characteristics and tensile behavior of medium manganese steels with different manganese additions,” Mater. Sci. Eng. A, vol. 729, pp. 496–507, 2018, doi: 10.1016/j.msea.2018.04.115.
  • [33] K. Radwański, “Application of FEG-SEM and EBSD methods for the analysis of the restoration processes occurring during continuous annealing of dual-phase steel strips,” Steel Res. Int., vol. 86, pp. 1379–1390, 2015, doi: 10.1002/srin.201400361.
  • [34] K-W. Kim et al., “Control of retained austenite morphology through bainitic transformation,” Mater. Sci. Eng. A, vol. 673, pp. 557–561, 2016, doi: 10.1016/j.msea.2016.07.083.
  • [35] D-W. Suh and S-J. Kim, “Medium Mn transformation-induced plasticity steels: recent progress and challenges,” Scr. Mater., vol. 126, pp. 63–67, 2011, doi: 10.1016/j.scriptamat.2016.07.013.
  • [36] K. Sugimoto, B. Yu, Y. Mukai, and S. Ikeda, “Microstructure and formability of aluminium bearing TRIP-aided steels with annealed martensite matrix,” ISIJ Int., vol. 45, no. 8, pp. 1194–2000, 2005, doi: 10.2355/isijinternational.45.1194.
  • [37] C. Wang, H. Ding, Z.Y. Tang, and J. Tang, “Effect of isothermal bainitic processing on microstructure and mechanical properties of novel Mo and Nb microalloyed steel,” Ironmak. teelmak., vol. 42, no. 1, pp. 9–16, 2015, doi: 10.1179/1743281214Y.0000000191.
  • [38] A. Varshney, S. Sangal, S. Kundu and K. Mondal, “Super strong and highly low alloy multiphase steels consisting of bainite, ferrite and retained austenite,” Mater. Des., vol. 95, pp. 75–88, 2016, doi: 10.1016/j.matdes.2016.01.078.
  • [39] C. Garcia-Mateo, F.G. Caballero, and H.K.D.H. Bhadeshia, “Acceleration of low-temperature bainite,” ISIJ Int., vol. 43, no. 11, pp. 1821–1825, 2003, doi: 10.2355/isijinternational.43.1821.
  • [40] A. Mohamadizadeh, A. Zarei-Hanzaki, S. Mehtonen, and D. Porter, “Effect of intercritical thermomechanical processing on austenite retention and mechanical properties in a multiphase TRIP-assisted steel,” Metall. Mater. Trans. A, vol. 47, pp. 436–449, 2016, doi: 10.1007/s11661-015-3213-9.
  • [41] M. Morawiec, A. Grajcar, W. Zalecki, C. Garcia-Mateo, and M. Opiela, “Dilatometric study of phase transformations in 5 Mn steel subjected to different heat treatments,” Materials, vol. 13, no. 4, p. 958, 2020, doi: 10.3390/ma13040958.
  • [42] A. Grajcar, P. Skrzypczyk, R. Kuziak, and K. Gołombek, “Effect of finishing hot-working temperature on microstructure of thermomechanically processed Mn-Al multiphase steels,” Steel Res. Int., vol. 85, pp. 1058–1069, 2014, doi: 10.1002/srin.201300227.
  • [43] A. Grajcar and R. Kuziak, “Softening kinetics in Nb-microalloyed TRIP steels with increased Mn content,” Adv. Mater. Res., vol. 314–316, pp. 119–122, 2011, doi: 10.4028/www.scientific.net/AMR.314-316.119.
  • [44] B. Garbarz and B. Ni˙znik-Harańczyk, “Modification of microstructure to increase impact toughness of nanostructured bainite-austenite steel,” Mater. Sci. Technol., vol. 31, no. 7, pp.773–780, 2014, doi: 10.1179/1743284714Y.0000000675.
  • [45] E. Skołek, K.Wasiak, andW.A. Świątnicki, “ Structure and properties of the carburised surface layer on 35CrSiMn5-5-4 steel after nanostructurization treatment,” Mater. Tehnol., vol. 49, no. 6, pp. 933–939, 2015, doi: 10.17222/mit.2014.255.
  • [46] K. Sugimoto, B. Yu, Y. Mukai, and S. Ikeda, “Microstructure and formability of aluminium bearing TRIP-aided steels with annealed martensite matrix,” ISIJ Int., vol. 45, no. 8, pp.1194–1200, 2005, doi: 10.2355/isijinternational.45.1194.
  • [47] L. Kucerová, H. Jirková, and B. Masek, “The effect of alloying on mechanical properties of advanced high strength steels,” Arch. Metall. Mater., vol. 59, pp.1189–1192, 2014, doi: 10.2478/amm-2014-0206.
  • [48] L. Zhao et al., “Quantitative dilatometric analysis of intercritical annealing in a low-silicon TRIP steel,” J. Mater. Sci., vol. 37, pp. 1585–1591, 2002, doi: 10.1023/A:1014941424093.
  • [49] E. Mazancova, I. Ruziak, and I. Schindler, “Influence of rolling conditions and aging process on mechanical properties of high manganese steels,” Arch. Civ. Mech. Eng., vol.12, pp.142–147, 2012, doi: 10.1016/j.acme.2012.04.009.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-abcb5018-f407-436d-8081-7eccbb23f4f2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.