PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Encapsulation of hydroxycitronellal in β-cyclodextrin and the characteristics of the inclusion complex

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Hydroxycitronellal has been widely used in foods, beverages, perfumery and cosmetics. It can also be used to treat anxiety. The major drawbacks regarding the use of hydroxycitronellal are related to water insolubility, volatility, instability, and sensitization. To overcome these concerns, β-cyclodextrin was adopted as wall material to encapsulate hydroxycitronellal in this work. Hydroxycitronellal-β-cyclodextrin inclusion complex was prepared and the product was characterized. The interaction of hydroxycitronellal and β-cyclodextrin, and the assembly of hydroxycitronellal-β-cyclodextrin inclusion complex were investigated by molecular simulation (MM). The results showed that hydroxycitronellal loading capacity was 8.5%. The thermal stability and lastingness of hydroxycitronellal were im-proved by the formation of the inclusion complex. The minimum binding energy was –151.2 kJ/mol. Among the perpendicular, staggered parallel and ideally parallel orientation of the inclusion complexes, the minimum energy value was found for the staggered parallel arrangement. These basic data are useful to understand the interaction between hydroxycitronellal and β-cyclodextrin.
Słowa kluczowe
Rocznik
Strony
20--27
Opis fizyczny
Bibliogr. 30 poz., rys., wz.
Twórcy
  • No. 100 Haiquan Road, Shanghai Institute of Technology, Shanghai 201418, PR China
  • Yancheng City Chunzhu Aroma Co., Ltd., Jiangsu, 22400, PR China
autor
  • No. 100 Haiquan Road, Shanghai Institute of Technology, Shanghai 201418, PR China
  • No. 800 Dongchuan Road, Shanghai Jiao Tong University, Shanghai, 200240, PR China
autor
  • No. 100 Haiquan Road, Shanghai Institute of Technology, Shanghai 201418, PR China
autor
  • No. 100 Haiquan Road, Shanghai Institute of Technology, Shanghai 201418, PR China
autor
  • 3035 Sable Ridge Dr. Ottawa. ON K1T 3R9, Canada
Bibliografia
  • 1. Surburg, H. & Panten, J. (2006). Common Fragrance and Flavor Materials. Weinheim, Wiley-Vch Verlag GmbH & Co. KGaA.
  • 2. Burdock, G.A. (2010). Fenaroli’s handbook of flavor ingredients. Boca Raton, CRC Press.
  • 3. Andrade, J. C., Monteiro, Á. B., Andrade, H. H. N., Gonzaga, T. K. S. N., Silva, P. R., Alves, D. N., Castro, R. D., Maia, M. S., Scotti, M. T., Sousa, D. P. & Almeida, Reinaldo N. (2021). Involvement of GABAA receptors in the anxiolytic-like effect of hydroxycitronellal. BioMed Res. Int. Article ID 9929805. DOI: 10.1155/2021/9929805.
  • 4. Teixeira, M. A., Rodríguez, O., Gomes, P., Mata, V. & Rodrigues, A. E. (2013). Perfume Engineering: Design, Performance & Classification, New York, Elsevier Ltd.
  • 5. Zhou, M. & Liu, J. (2000). Study on the permeability of cinnamic aldehyde and hydroxycitronellal in vitro. Chinese J. Health Labor. Technol., 10(2), 135–137. DOI: CNKI:SUN:ZWJZ.0.2000-02-003.
  • 6. Liu S. (2000). Technological Manuals of Synthetic Aroma Chemical, Beijing, China Light Industry Press Ltd.
  • 7. Heydorn, S., Andersen, K. E., Johansen, J. D. & Menné, T. (2003). A stronger patch test elicitation reaction to the allergen hydroxycitronellal plus the irritant sodium lauryl sulfate. Contact Dermatitis 49, 133–139. DOI: 10.1111/j.0105-1873.2003.00175.x.
  • 8. Calnan, C. D. (1979). Unusual hydroxycitronellal perfume dermatitis. Contact Dermatitis 5(2), 123–123. DOI: 10.1111/j.1600-0536.1979.tb04816.x.
  • 9. Steltenkamp, R. J., Booman, K. A., Dorsky, J., King, T. O., Rothenstein, A. S., Schwoeppe, E. A., Sedlak, R. I., Smith T. H. F. & Thompson, G.R. (1980). Hydroxycitronellal: a survey of consumer patch-test sensitization. Food Cosm. Toxicol. 18, 407–412. DOI: 10.1016/0015-6264(80)90198-4.
  • 10. Ford, R. A., Api, A. M. & Suskind, R. R. (1988). Allergic contact sensitization potential of hydroxycitronellal in humans. Food Chem. Toxicol. 26, 921–926. DOI: 10.1016/0278-6915(88)90090-7.
  • 11. Liu, X., Wu, J., Wang, M. & Zhang, M. (2021). Research progress of cometic delivery system: application of pharmaceutical new dosage forms and new techniques in cosmetics. Flavour Frag. Cosmetics, 6, 99–105. (in Chnises).
  • 12. Amann, M. & Dressnandt, G. (1993). Solving problems with cyclodextrins in cosmetics. Cosmetics and Toiletries, 108, 90–95.
  • 13. Chen, N., Zhang, H. & Li, L. (2022). The carrier structure of retinol and retinol derivatives and its application in cosmetics. Chem. World 63(1), 51–56. (in Chinese). DOI: 10.19500/j. cnki.0367-6358.20200814.
  • 14. Celebioglu, A., Yildiz, Z. I. & Uyar, T. (2018). Thymol/cyclodextrin inclusion complex nanofibrous webs: Enhanced water solubility, high thermal stability and antioxidant property of thymol. Food Res. Int. 106, 280–290. DOI: 10.1016/j. foodres.2017.12.062.
  • 15. Kibici, D. & Kahveci, D. (2019). Effect of emulsifier type, maltodextrin, and β-cyclodextrin on physical and oxidative stability of oil-in-water emulsions. J. Food Sci. 84(6), 1273–1280. DOI: 10.1111/1750-3841.14619.
  • 16. Perinelli, D. R., Palmieri, G. F., Cespi, M. & Bonacucina, G. (2020). Encapsulation of Flavours and Fragrances into Polymeric Capsules and Cyclodextrins Inclusion Complexes: An Update. Molecules 25, 5878. DOI: 10.3390/molecules25245878.
  • 17. Kayaci, F., Sen, H.S., Durgun, E. & Uyar, T. (2014). Functional electrospun polymeric nanofibers incorporating geraniol–cyclodextrin inclusion complexes: High thermal stability and enhanced durability of geraniol. Food Res. Int. 62, 424–431. DOI: 10.1016/j.foodres.2014.03.033.
  • 18. Siva, S., Li, C., Cui, H. & Lin, L. (2019). Encompassment of isoeugenol in 2-hydroxypropyl-β-cyclodextrin using ultrasonication: Characterization, antioxidant and antibacterial activities. J. Mol. Liq. 296, 111777. DOI: 10.1016/j.molliq.2019.111777.
  • 19. Real, D., Leonardi, D., WilliamsIII, R. O., Repka, M. A. & Salomon, C. J. (2018). Solving the Delivery Problems of Triclabendazole Using Cyclodextrins. AAPS PharmSciTech 19, 2311–2321. DOI: 10.1208/s12249-018-1057-5.
  • 20. Zhu, G., Jiang, X., Zhu, G. & Xiao, Z. (2020). Encapsulation of difurfuryl disulfde in β-cyclodextrin and release characteristics of the guest from its inclusion complex. J. Incl. Phenom. Macro. Chem. 96, 263–273. DOI: 10.1007/s10847-019-00967-x.
  • 21. Zhu, G., Zhu, G. & Xiao, Z. (2021). Study of formation constant, thermodynamics and β-ionone release characteristic of β-ionone-hydroxypropyl-β-cyclodextrin inclusion complex. Polym. Bull. 78, 247–260. DOI: 10.1007/s00289-020-03108-4.
  • 22. Zhu, G., Xiao, Z., Yu, G., Zhu, G., Niu, Y. & Liu, J. (2021). Formation and characterization of furfuryl mercaptan-β-cyclodextrin inclusion complex and its thermal release characteristics. Pol. J. Chem. Technol. 23(4), 35–40. DOI: 10.2478/pjct-2021-0035.
  • 23. Zhu, G., Xiao, Z. & Zhu, G. (2021). Fabrication and characterization of ethyl acetate-hydroxypropyl-β-cyclodextrin inclusion complex. J. Food Sci. 86, 3589–3597. DOI: 10.1111/1750-3841.15835.
  • 24. Saenger, W., Jacob, J., Gessler, K., Steiner, T., Hoffmann, D., Sanbe, H., Koizumi, K., Smith, S.M. & Takaha, T. (1998). Structures of the common cyclodextrins and their larger analoguess beyond the doughnut. Chem. Rev. 98, 1787–1802. DOI: 10.1021/cr9700181.
  • 25. He, Y., Fu, P., Shen, X. & Gao, H. (2008). Cyclodextrin-based aggregates and characterization by microscopy. Micron 39, 495–516. DOI: 10.1016/j.micron.2007.06.017.
  • 26. Stuart, B. (1996). Modern Infrared Spectroscopy. New York, John Wiley & Sons27.Ning, Y. (2010). Spectroscopy in Organic Chemistry and Spectral Analysis. Beijing, China Science Publishing & Media Ltd.
  • 27. Ning, Y. (2010). Spectroscopy in Organic Chemistry and Spectral Analysis. Beijing, China Science Publishing & Media Ltd.
  • 28. Zhu, G., Zhu, G. & Xiao, Z. (2019). A review of the production of slowrelease favor by formation inclusion complex with cyclodextrins and their derivatives. J. Incl. Phenom. Macro. Chem. 95, 17–33. DOI: 10.1007/s10847-019-00929-3.
  • 29. Zhu, G., Jin, Y., Xiao, Z. & Zhu, G. (2022). Preparation and characterization of the dimethyl sulfide-β-cyclodextrin inclusion complex. J. Food Sci. 87, 3084–3094. DOI: 10.1111/1750-3841.16216.
  • 30. Zhu, G., Xiao, Z., Zhou, R., Liu, J., Zhu, G. & Zheng X. (2022). (-)-Menthol-β-cyclodextrin inclusion complex production and characterization. Pol. J. Chem. Technol. 24(2), 1–7. DOI: 10.2478/pjct-2022-0008.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-abc9b4a5-1f0f-4d4e-9c47-dceed2dfe513
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.