PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Electricity in organic and conventional farms - economic value of environmental damage

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Energia elektryczna w gospodarstwach ekologicznych i konwencjonalnych – ekonomiczna wartość szkód środowiskowych
Języki publikacji
EN
Abstrakty
EN
The aim of this study was to determine the economic value of the environmental impact of electricity used in agricultural production in organic and conventional farms in Poland in relation to cropped area and production value. This study investigated the use of electricity from the grid and that generated using photovoltaic panels. Farm models were constructed based on FADN data. Environmental damage was evaluated by applying the Environmental Prices method with the use of the SimaPro 9.3 program. Results were expressed in prices of 2022. The environmental impact of electricity used in organic farms investigated in this study amounted to 2267 euro/ha and 31.14 euro/1000 euro of production value, while in conventional farms, it was 32.33 euro/ha and 19.27 euro/1000 euro of production value when only energy from the grid was used. In turn, the use of energy generated by photovoltaic panels made it possible to considerably reduce environmental pressure. In the case of organic farms, the recorded indexes were 1.68 euro/ha and 2.31 euro/1000 euro of production value, whereas, in conventional farms, it was 2.72 euro/ha and 1.62 euro/1000 euro of production value. These results indicate that the use of electricity for production in organic farms generates less environmental damage than in the case of conventional farms per unit area, whereas, for the respective figures in relation to production value, an opposite relationship was found.
PL
Celem badań było określenie wartości ekonomicznej oddziaływania na środowisko energii elektrycznej wykorzystywanej w produkcji rolnej gospodarstw ekologicznych i konwencjonalnych w Polsce w odniesieniu do powierzchni upraw i wartości produkcji. W pracy uwzględniono wykorzystanie energii elektrycznej z sieci energetycznej i paneli fotowoltaicznych. Modele gospodarstw zbudowano w oparciu o dane z FADN. Wycenę szkód środowiskowych przeprowadzono metodą cen środowiskowych, wykorzystując program SimaPro 9.3. Wyniki wyrażono w cenach z 2022 r. Oddziaływanie na środowisko energii elektrycznej wykorzystanej w objętych badaniem gospodarstwach ekologicznych wyniosło 22,67 euro/ha i 31,14 euro/1000 euro wartości produkcji, natomiast w gospodarstwach konwencjonalnych 32,33 euro/ha i 19,27 euro/1000 euro wartości produkcji, w przypadku, gdy korzystano tylko z energii z sieci energetycznej. Wykorzystanie energii z paneli fotowoltaicznych pozwoliło na znaczne ograniczenie presji środowiskowej. W przypadku gospodarstw ekologicznych uzyskane wskaźniki wynosiły 1,68 euro/ha i 2,31 euro/1000 euro wartości produkcji, a w gospodarstwach konwencjonalnych 2,72 euro/ha i 1,62 euro/1000 euro wartości produkcji. Uzyskane wyniki wskazują, że wykorzystanie energii elektrycznej do produkcji w gospodarstwach ekologicznych wywołuje mniejsze szkody środowiskowe niż w gospodarstwach konwencjonalnych w przeliczeniu na jednostkę powierzchni, natomiast w odniesieniu do wartości produkcji zależność jest odwrotna.
Rocznik
Tom
Strony
art. no. 803
Opis fizyczny
Bibliogr. 82 poz., rys., tab., wykr.
Twórcy
  • Warsaw University of Life Sciences – SGGW, Nowursynowska Street 166, 02-787 Warszawa, Poland
  • University of Applied Sciences in Elbląg – ANS
  • Warsaw University of Life Sciences – SGGW
  • Warsaw University of Life Sciences – SGGW
Bibliografia
  • Adegbeye, M. J., Reddy, P. R. K., Obaisi, A. I., Elghandour, M. M. M. Y., Oyebamiji, K. J., Salem, A. Z. M., Morakinyo-Fasipe, O. T., Cipriano-Salazar, M., & Camacho-Díaz, L. M. (2020). Sustainable agriculture options for production, greenhouse gasses and pollution alleviation, and nutrient recycling in emerging and transitional nations - An overview. Journal of Cleaner Production, 242, 118319. https://doi.org/10.1016/j.jclepro.2019.118319
  • Aguilera, E., Guzmán, G., & Alonso, A. (2015). Greenhouse gas emissions from conventional and organic cropping systems in Spain. II. Fruit tree orchards. Agronomy for Sustainable Development, 35, 725-737. https://doi.org/10.1007/s13593-014-0265-y
  • Alexandratos, N., & Bruinsma, J. (2012). World agriculture towards 2030/2050: the 2012 revision. https://www.fao.org/3/ap106e/ap106e.pdf
  • Alvarez, R. (2022). Comparing productivity of organic and conventional farming systems: a quantitative review. Archives of Agronomy and Soil Science, 68(14), 1947-1958. https://doi.org/10.1080/03650340.2021.1946040
  • Amadei, A. M., De Laurentiis, V., & Sala, S. (2021). A review of monetary valuation in life cycle assessment: State of the art and future needs. Journal of Cleaner Production, 329, 129668. https://doi.org/10.1016/j.jclepro.2021.129668
  • Arendt, R., Bachmann, T. M., Motoshita, M., Bach, V., & Finkbeiner, M. (2020). Comparison of Different Monetization Methods in LCA: A Review. Sustainability, 12(24), 10493. https://doi.org/10.3390/su122410493
  • Arvesen, A., & Hertwich, E. G. (2012). Assessing the life cycle environmental impacts of wind power: A review of present knowledge and research needs. Renewable and Sustainable Energy Reviews, 16(8), 5994-6006. https://doi.org/10.1016/j.rser.2012.06.023
  • Aulakh, C. S., Sharma, S., Thakur, M., & Kaur, P. (2022). A review of the influences of organic farming on soil quality, crop productivity and produce quality. Journal of Plant Nutrition, 45(12), 1884-1905. https://doi.org/10.1080/01904167.2022.2027976
  • Aznar-Sánchez, J. A., Piquer-Rodríguez, M., Velasco-Muñoz, J. F., & Manzano-Agugliaro, F. (2019). Worldwide research trends on sustainable land use in agriculture. Land Use Policy, 87, 104069. https://doi.org/10.1016/j.landusepol.2019.104069
  • Badgley, C., & Perfecto, I. (2007). Can organic agriculture feed the world? A review of the research. Renewable Agriculture and Food Systems, 22(2), 80-86. https://doi.org/10.1017/S1742170507001986
  • Bukowski, M., Majewski, J., & Sobolewska, A. (2020). Macroeconomic Electric Energy Production Efficiency of Photovoltaic Panels in Single-Family Homes in Poland. Energies, 14(1), 126. https://doi.org/10.3390/en14010126
  • Bukowski, M., Majewski, J., & Sobolewska, A. (2021). Macroeconomic efficiency of photovoltaic energy production in Polish farms. Energies, 14(18), 5721. https://doi.org/10.3390/en14185721
  • Bukowski, M., Majewski, J., Sobolewska, A., Stawicka, E., & Suchoń, A. (2022). Wybrane ekonomiczne i prawne aspekty wytwarzania energii z instalacji fotowoltaicznych w gospodarstwach rolnych województwa mazowieckiego. Warszawa: Wydawnictwo SGGW. (in Polish).
  • Chabert, A., & Sarthou, J. P. (2020). Conservation agriculture as a promising trade-off between conventional and organic agriculture in bundling ecosystem services. Agriculture, Ecosystems & Environment, 292, 106815. https://doi.org/10.1016/j.agee.2019.106815
  • De Bruyn, S., Bijleveld, M., de Graaff, L., Schep, E., Schroten, A., Vergeer, R., & Ahdour, S. (2018). Environmental Prices Handbook. https://cedelft.eu/wp-content/uploads/sites/2/2021/04/CE_Delft_7N54_Environmental_Prices_Handbook_EU28_version_Def_VS2020.pdf
  • Du Pisani, J. A. (2006). Sustainable development – historical roots of the concept. Environmental Sciences, 3(2), 83-96. https://doi.org/10.1080/15693430600688831
  • Durán-Lara, E. F., Valderrama, A., & Marican, A. (2020). Natural Organic Compounds for Application in Organic Farming. Agriculture, 10(2), 41. https://doi.org/10.3390/agriculture10020041
  • Durham, T. C., & Mizik, T. (2021). Comparative economics of conventional, organic, and alternative agricultural production systems. Economies, 9(2), 64. https://doi.org/10.3390/economies9020064
  • Eldh, P., & Johansson, J. (2006). Weighting in LCA based on ecotaxes-development of a mid-point method and experiences from case studies. The International Journal of Life Cycle Assessment, 11, 81-88.
  • European Commission. (n.d.). FADN Database. https://agridata.ec.europa.eu/extensions/FarmEconomyFocus/FADNDatabase.html
  • Euro-pln.pl. (2023, June 20). Kurs euro 2022 rok. https://eur-pln.pl/2022/ (in Polish).
  • Faber, A., & Jarosz, Z. (2023). Charakterystyka zrównoważenia rozwoju biogospodarki w Polsce - wymiar ekologiczny. Zeszyty Naukowe SGGW w Warszawie - Problemy Rolnictwa Światowego, 23(1), 4-18. https://doi.org/10.22630/PRS.2023.23.1.1 (in Polish).
  • Fetting, C. (2020). The European green deal. https://www.esdn.eu/fileadmin/ESDN_Reports/ESDN_Report_2_2020.pdf
  • Flam, H., & Hassler, J. (2023). Introduction: EU climate policy and Fit for 55. Nordic Economic Policy Review. https://pub.norden.org/nord2023-001/introduction-eu-climate-policy-and-fit-for-55.html
  • Floriańczyk, Z., Malanowska, B., Osuch, D., & Wójcik, M. (2024). Opis realizacji planu wyboru próby gospodarstw rolnych dla Polskiego FADN w 2024 roku. Warszawa: Wydawnictwo IERiGŻ PIB. (in Polish).
  • Foley, J. A., Ramankutty, N., Brauman, K. A., Cassidy, E. S., Gerber, J. S., Johnston, M., Mueller, N. D., O’Connell, C., Ray, D. K., West, P. C., Balzer, C., Bennett, E. M., Carpenter, S. R., Hill, J., Monfreda, C., Polasky, S., Rockström, J., Sheehan, J., Siebert, S., Tilman, D., & Zaks, D. P. M. (2011). Solutions for a Cultivated Planet. Nature, 478, 337-342. https://doi.org/10.1038/nature10452
  • Gamage, A., Gangahagedara, R., Gamage, J., Jayasinghe, N., Kodikara, N., Suraweera, P., & Merah, O. (2023). Role of organic farming for achieving sustainability in agriculture. Farming System, 1(1), 100005. https://doi.org/10.1016/j.farsys.2023.100005
  • Godfray, H. C. J., & Garnett, T. (2014). Food security and sustainable intensification. Philosophical Transactions of the Royal Sociaty B, 369, 20120273. http://doi.org/10.1098/rstb.2012.0273
  • Goraj, L., & Mańko, S. (2009). Rachunkowość i analiza ekonomiczna w indywidualnym gospodarstwie rolnym. Warszawa: Difin. (in Polish).
  • GUS. (2023, June 20). Half-yearly price indices of consumer goods and services from 1989. https://stat.gov.pl/en/topics/prices-trade/price-indices/price-indices-of-consumer-goods-and-services/half-yearly-price-indices-of-consumer-goods-and-services-from-1989/
  • Han, H., Arbuckle, J. G., & Grudens-Schuck, N. (2021). Motivations, goals, and benefits associated with organic grain farming by producers in Iowa, U.S. Agricultural Systems, 191, 103175. https://doi.org/10.1016/j.agsy.2021.103175
  • Hertwich, E. G., Gibon, T., Bouman, E. A., Arvesen, A., Suh, S., Heath, G. A., Bergesen, J. D., Ramirez, A., Vega, M. I., & Shi, L. (2015). Integrated life-cycle assessment of electricity-supply scenarios confirms global environmental benefit of low-carbon technologies. Proceedings of the National Academy of Sciences, 112(20), 6277-6282. https://doi.org/10.1073/pnas.1312753111
  • Hutchison, J. R., Widder, M. W., Brooks, S. M., Brennan, L. M., Souris, L., Divito, V. T., van der Schalie, W. H., & Ozanich, R. M. (2019). Consistent production of chlorine-stressed bacteria from non-chlorinated secondary sewage effluents for use in the U.S. Environmental Protection Agency Alternate Test Procedure protocol. Journal of Microbiological Methods, 163, 105651. https://doi.org/10.1016/j.mimet.2019.105651
  • Jakobs, A., Schulte, S., & Pauliuk, S. (2021). Price variance in hybrid-LCA leads to significant uncertainty in carbon footprints. Frontiers in Sustainability, 2, 666209
  • Józwiak, W. (1998). Efektywność gospodarowania w rolnictwie. Encyklopedia agrobiznesu. Warszawa: Fundacja Innowacyjna. (in Polish).
  • Józwiak, W., & Kagan, A. (2008). Gospodarstwa towarowe a gospodarstwa wielkotowarowe. Roczniki Nauk Rolniczych, 95(1), 22-30. https://doi.org/10.22630/RNR.2008.95.1.3 (in Polish).
  • Kociszewski, K. (2022). Perspectives of Polish organic farming development in the aspect of the European Green Deal. Economics and Environment, 81(2), 154-167. https://doi.org/10.34659/eis.2022.81.2.461
  • Kougias, I., Taylor, N., Kakoulaki, G., & Jäger-Waldau, A. (2021). The role of photovoltaics for the European Green Deal and the recovery plan. Renewable and Sustainable Energy Reviews, 144, 111017. https://doi.org/10.1016/j.rser.2021.111017
  • Krauss, M., Berner, A., Perrochet, F., Frei, R., Niggli, U., & Mäder, P. (2020). Enhanced soil quality with reduced tillage and solid manures in organic farming – a synthesis of 15 years. Scientific Reports, 10, 4403. https://doi.org/10.1038/s41598-020-61320-8
  • Kuczuk, A. (2015). Cost-and energy–related determinants for conventional and organic cultivation of winter wheat. Ekonomia i Środowisko, 52(1), 110-123. https://bibliotekanauki.pl/articles/96145 (in Polish).
  • Laurent, A., & Espinosa, N. (2015). Environmental impacts of electricity generation at global, regional and national scales in 1980-2011: What can we learn for future energy planning? Energy and Environmental Sciences, 8(3), 689-701. https://doi.org/10.1039/C4EE03832K
  • Laurent, A., Espinosa, N., & Hauschild, M. Z. (2018). LCA of Energy Systems. In M. Hauschild, R. Rosenbaum & S. Olsen (Eds.), Life Cycle Assessment. Theory and Practice (pp. 633-668). Cham: Springer. https://doi.org/10.1007/978-3-319-56475-3_26
  • Le Campion, A., Oury, F. X., Heumez, E., & Rolland, B. (2020). Conventional versus organic farming systems: dissecting comparisons to improve cereal organic breeding strategies. Organic Agriculture, 10, 63-74. https://doi.org/10.1007/s13165-019-00249-3
  • Li, Z., Yano, A., Cossu, M., Yoshioka, H., Kita, I., & Ibaraki, Y. (2018). Electrical energy producing greenhouse shading system with a semi-transparent photovoltaic blind based on micro-spherical solar cells. Energies, 11(7), 1681. https://doi.org/10.3390/en11071681
  • Lichtfouse, E., Navarrete, M., Debaeke, P., Souchère, V., Alberola, C., & Ménassieu, J. (2009). Agronomy for Sustainable Agriculture: A Review. Agronomy for Sustainable Development, 29, 1-7. https://doi.org/10.1007/978-90-481-2666-8_1
  • Loizou, E., Karelakis, C., Galanopoulos, K., & Mattas, K. (2019). The role of agriculture as a development tool for a regional economy. Agricultural Systems, 173, 482-490. https://doi.org/10.1016/j.agsy.2019.04.002
  • Łuczka, W. (2021). Procesy rozwojowe rolnictwa ekologicznego i ich ekonomiczno-społeczne warunkowania. Warszawa: Wydawnictwo Naukowe Scholar. (in Polish).
  • Mabon, L., Shih, W. Y., Kondo, K., Kanekiyo, H., & Hayabuchi, Y. (2019). What is the role of epistemic communities in shaping local environmental policy? Managing environmental change through planning and greenspace in Fukuoka City, Japan. Geoforum, 104, 158-169. https://doi.org/10.1016/j.geoforum.2019.04.024
  • Maśloch, P., Maśloch, G., Kuźmiński, Ł., Wojtaszek, H., & Miciuła, I. (2020). Autonomous energy regions as a proposed choice of selecting selected EU regions – Aspects of their creation and management. Energies, 13(23), 6444. https://doi.org/10.3390/en13236444
  • Meemken, E. M., & Qaim, M. (2018). Organic agriculture food security and the environment. Annual Review of Resource Economics, 10(1), 39-63. https://doi.org/10.1146/annurev-resource-100517-023252
  • Mondelaers, K., Aertsens, J., & Van Huylenbroeck, G. (2009). A meta‐analysis of the differences in environmental impacts between organic and conventional farming. British food journal, 111(10), 1098-1119. https://doi.org/10.1108/00070700910992925
  • Niggli, U. (2015). Sustainability of organic food production: Challenges and innovations. Proceedings of the Nutrition Society, 74(1), 83-88. https://doi.org/10.1017/S0029665114001438
  • Omer, A. M. (2008). Energy, environment and sustainable development. Renewable and Sustainable Energy Reviews, 12(9), 2265-2300. https://doi.org/10.1016/j.rser.2007.05.001
  • Owusu, P. A., & Asumadu-Sarkodie, S. (2016). A review of renewable energy sources, sustainability issues and climate change mitigation. Cogent Engineering, 3(1), 1167990. http://dx.doi.org/10.1080/23311916.2016.1167990
  • Pawłowska-Tyszko, J., Osuch, D., & Płonka, R. (2023). Wyniki Standardowe 2022 uzyskane przez gospodarstwa rolne uczestniczące w Polskim FADN. Część I. Wyniki Standardowe. Warszawa: Wydawnictwo IERiGŻ PIB. (in Polish).
  • Peng, B., Sheng, X., & Wei, G. (2020). Does environmental protection promote economic development? From the perspective of coupling coordination between environmental protection and economic development. Environmental Science and Pollution Research, 27, 39135-39148. https://doi.org/10.1007/s11356-020-09871-1
  • Perera, F. (2018). Pollution from fossil-fuel combustion is the leading environmental threat to global pediatric health and equity: solutions exist. International Journal of Environmental Research and Public Healt, 15(1), 16. https://doi.org/10.3390/ijerph15010016
  • Pizzol, M., Weidema, B., Brandão, M., & Osset, P. (2015). Monetary valuation in life cycle assessment: a review. Journal of Cleaner Production, 86, 170-179. https://doi.org/10.1016/j.jclepro.2014.08.007
  • Reganold, J. P., & Wachter, J. M. (2016). Organic agriculture in the twenty-first century. Nature Plants, 2(2), 1-8. https://doi.org/10.1038/nplants.2015.221
  • Rokicki, T., Perkowska, A., Klepacki, B., Bórawski, P., Bełdycka-Bórawska, A., & Michalski, K. (2021). Changes in energy consumption in agriculture in the EU countries. Energies, 14(6), 1570. https://doi.org/10.3390/en14061570
  • Runowski, H. (2012). Rolnictwo ekologiczne w Polsce – stan i perspektywy. In S. Zegar (Ed.), Z badań nad rolnictwem społecznie zrównoważonym (pp. 38-78). Warszawa: IERiGŻ-PIB. (in Polish).
  • Samandi, S. (2017). The Social Costs of Electricity Generation – Categorising Different Types of Costs and Evaluating Their Respective Relevance. Energies, 10(3), 356. https://doi.org/10.3390/en10030356
  • Sandhu, H. S., Wratten, S. D., & Cullen, R. (2010). The role of supporting ecosystem services in conventional and organic arable farmland. Ecological Complexity, 7(3), 302-310. https://doi.org/10.1016/j.ecocom.2010.04.006
  • Sapbamrer, R., & Thammachai, A. (2021). A Systematic Review of Factors Influencing Farmers’ Adoption of Organic Farming. Sustainability, 13(7), 3842. https://doi.org/10.3390/su13073842
  • Seufert, V., & Ramankutty, N. (2017). Many shades of gray – The context-dependent performance of organic agriculture. Sciences Advances, 3(3), e1602638. https://doi.org/10.1126/sciadv.1602638
  • Siddi, M. (2020). The European Green Deal: assessing its current state and future implementation. https://www.fiia.fi/wp-content/uploads/2020/05/wp114_european-green-deal.pdf
  • Sieczko, L., & Kołoszko-Chomentowska, Z. (2023). Relationships between economic and ecological indicators and greenhouse gas emissions: The perspective of farms in Poland at the regional level. Economics and Environment, 86(3), 382-395. https://doi.org/10.34659/eis.2023.86.3.612
  • Smith, O. M., Cohen, A. L., Rieser, C. J., Davis, A. G., Taylor, J. M., Adesanya, A. W., Jones, M. S., Meier, A. R., Reganold, J. P., Orpet, R. J., Northfield, T. D., & Crowder, D. W. (2019). Organic Farming Provides Reliable Environmental Benefits but Increases Variability in Crop Yields: A Global Meta-Analysis. Frontiers in Sustainable Food Systems, 3, 82. https://doi.org/10.3389/fsufs.2019.00082
  • Smith, P., Gregory, P. J., van Vuuren, D., Obersteiner, M., Havlík, P., Rounsevell, M., Woods, J., Stehfest, E., & Bellarby, J. (2010). Competition for land. Philosophical Transactions of the Royal Society B - Biological Sciences, 365, 2941-2957. https://doi.org/10.1098/rstb.2010.0127
  • Solarin, S. A. (2020). An environmental impact assessment of fossil fuel subsidies in emerging and developing economies. Environmental Impact Assessment Review, 85, 106443. https://doi.org/10.1016/j.eiar.2020.106443
  • Szerement, J., Szatanik-Kloc, A., Jarosz, R., Bajda, T., & Mierzwa-Hersztek, M. (2021). Contemporary applications of natural and synthetic zeolites from fly ash in agriculture and environmental protection. Journal of Cleaner Production, 311, 127461. https://doi.org/10.1016/j.jclepro.2021.127461
  • Thiesen, J., Christensen, T. S., Kristensen, T. G., Andersen, R. D., Brunoe, B., Gregersen, T. K., ... & Weidema, B. P. (2008). Rebound effects of price differences. The International Journal of Life Cycle Assessment, 13, 104-114.
  • Tilman, D., Balzer, Ch., & Befort, B. L. (2011). Global food demand and the sustainable intensification of agriculture. Proceedings of the National Academy of Sciences, 108(50), 20260-20264. https://doi.org/10.1073/pnas.1116437108
  • Trading Economics. (2023, June 20). European Union Consumer Price Index (CPI). https://tradingeconomics.com/european-union/consumer-price-index-cpi
  • Tscharntke, T., Grass, I., Wanger, T. C., Westphal, C., & Batáry, P. (2021). Beyond organic farming – harnessing biodiversity-friendly landscapes. Trends in Ecology and Evolution, 36(10), 919-930. https://doi.org/10.1016/j.tree.2021.06.010
  • Tyburski, J., & Żakowska-Biemans, S. (2007). Wprowadzenie do rolnictwa ekologicznego. Warszawa: Wydawnictwo SGGW. (in Polish).
  • Ukaogo, P. O., Ewuzie, U., & Onwuka, C. V. (2020). Environmental pollution: causes, effects, and the remedies. In P. Chowdhary, A. Raj, D. Verma & Y. Akhter (Eds.), Microorganisms for Sustainable Environment and Health (pp. 419-429). Amsterdam: Elsevier. https://doi.org/10.1016/B978-0-12-819001-2.00021-8
  • Valle, P. O., Pintassilgo, P., Matias, A., & André, F. (2012). Tourist attitudes towards an accommodation tax earmarked for environmental protection: a survey in the Algarve. Tourism Management, 33(6), 1408-1416. https://doi.org/10.1016/j.tourman.2012.01.003
  • Van Mansvelt, J. D., Stobbelaar, D. J., & Hendriks, K. (1998). Comparison of landscape features in organic and conventional farming systems. Landscape and urban planning, 41(3-4), 209-227. https://doi.org/10.1016/S0169-2046(98)00060-7
  • Venkat, K. (2012). Comparison of twelve organic and conventional farming systems: a life cycle greenhouse gas emissions perspective. Journal of Sustainable Agriculture, 36(6), 620-649. https://doi.org/10.1080/10440046.2012.672378
  • Verbruggen, A., Laes, E., & Woerdman, E. (2019). Anatomy of emissions trading systems: what is the EU ETS? Environmental Science & Policy, 98, 11-19. https://doi.org/10.1016/j.envsci.2019.05.001
  • Yu, M., & Wiedmann, T. (2018). Implementing hybrid LCA routines in an input–output virtual laboratory. Journal of Economic Structures, 7(1), 33.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-abc70055-87ce-49f4-b3b7-0542f6541cfc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.