PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Cold Plasma Surface Modification of PLA and LDPE Polymer Plastics

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Low-density polyethylene (LDPE) and polylactic acid (PLA) plastic films were subjected to modification using different plasma sources. Argon, nitrogen, air and oxygen were used as a gas phase throughout the process, and their impact on the material's surface properties was verified. The surface activation rate was measured via atomic force microscopy regarding the porosity factor and using the water contact angle technique. The last method – being feasible, agile and of high sensitivity to alternating physicochemical surface character – was utilised to verify the post-process stability of the modified surface. Those tests were performed extensively, up to 160 hours (contact angle) and 240 hours (atomic force microscopy).
Rocznik
Tom
Strony
141--147
Opis fizyczny
Bibliogr. 25 poz., rys., tab.
Twórcy
autor
  • Faculty of Environmental Engineering, Wrocław University of Science and Technology, Poland
Bibliografia
  • Ali, W., Ali, H., Gillani, S., Zinck, P., Souissi, S. (2023). Polylactic acid synthesis, biodegradability, conversion to microplastics and toxicity: A review. Environmental Chemistry Letters, 21(3), 1761-1786. https://doi.org/10.1007/s10311-023-01564-8
  • Asadollahi, M., Gerashi, E., Zohrevand, M., Zarei, M., Sayedain, S.S., Alizadeh, R., … Atari, M. (2022). Improving mechanical properties and biocompatibility of 3D printed PLA by the addition of PEG and titanium particles, using a novel incorporation method. Bioprinting, 27, e00228. https://doi.org/10.1016/j.bprint.2022.e00228
  • Astvansh, V. (2021). Winning with Packaging: When Does Repackaging Elevate Sales? SSRN Electronic Journal. https://doi.org/10.2139/ssrn.3984942
  • Božović, A., Tomašević, K., Benbettaieb, N., Debeaufort, F. (2023). Influence of Surface Corona Discharge Process on Functional and Antioxidant Properties of Bio-Active Coating Applied onto PLA Films. Antioxidants, 12(4), 859. https://doi.org/10.3390/antiox12040859
  • DeStefano, V., Khan, S., Tabada, A. (2020). Applications of PLA in modern medicine. Engineered Regeneration, 1, 76-87. https://doi.org/10.1016/j.engreg.2020.08.002
  • Ebadi-Dehaghani, H., Khonakdar, H.A., Barikani, M., Jafari, S.H. (2015). Experimental and theoretical analyses of mechanical properties of PP/PLA/clay nanocomposites. Composites Part B: Engineering, 69, 133-144. https://doi.org/10.1016/j.compositesb.2014.09.006
  • Fard, M.A., Reid, A.J., Hepburn, D.M. (2017). Analysis of HVDC superimposed harmonic voltage effects on partial discharge behavior in solid dielectric media. IEEE Transactions on Dielectrics and Electrical Insulation, 24(1), 7-16. https://doi.org/10.1109/TDEI.2016.005934
  • Lee, T., Puligundla, P., Mok, C. (2017). Corona Discharge Plasma Jet Inactivates Food-borne Pathogens Adsorbed onto Packaging Material Surfaces: CDPJ decontamination of packaging material surfaces. Packaging Technology and Science, 30(10), 681-690. https://doi.org/10.1002/pts.2311
  • Liu, M., Bauman, L., Nogueira, C.L., Aucoin, M.G., Anderson, W.A., Zhao, B. (2022). Antimicrobial polymeric composites for high-touch surfaces in healthcare applications. Current Opinion in Biomedical Engineering, 22, 100395. https://doi.org/10.1016/j.cobme.2022.100395
  • Matsunaga, M., Whitney, P. J. (2000). Surface changes brought about by corona discharge treatment of polyethylene film and the effect on subsequent microbial colonisation. Polymer Degradation and Stability, 70(3), 325-332. https://doi.org/10.1016/S0141-3910(00)00105-1
  • Moshood, T.D., Nawanir, G., Mahmud, F., Mohamad, F., Ahmad, M.H., AbdulGhani, A. (2022). Sustainability of biodegradable plastics: New problem or solution to solve the global plastic pollution? Current Research in Green and Sustainable Chemistry, 5, 100273. https://doi.org/10.1016/j.crgsc.2022.100273
  • Non-Thermal Plasma Technology for Polymeric Materials. (2019). Elsevier. https://doi.org/10.1016/C2016-0-03254-0
  • Oksiuta, Z., Jalbrzykowski, M., Mystkowska, J., Romanczuk, E., Osiecki, T. (2020). Mechanical and Thermal Properties of Polylactide (PLA) Composites Modified with Mg, Fe, and Polyethylene (PE) Additives. Polymers, 12(12), 2939. https://doi.org/10.3390/polym12122939
  • Ozdemir, M., Yurteri, C.U., Sadikoglu, H. (1999). Physical Polymer Surface Modification Methods and Applications in Food Packaging Polymers. Critical Reviews in Food Science and Nutrition, 39(5), 457-477. https://doi.org/10.1080/10408699991279240
  • Pan, Z., Ju, Q., Zhao, D., Shen, Y., Wang, T. (2021). Enhanced oxygen barrier properties of poly(lactic acid) via oxygen scavenging strategy combining with uniaxial stretching. International Journal of Biological Macromolecules, 181, 521-527. https://doi.org/10.1016/j.ijbiomac.2021.03.161
  • Pankaj, S.K., Bueno-Ferrer, C., Misra, N.N., Milosavljević, V., O'Donnell, C.P., Bourke, P., … Cullen, P.J. (2014). Applications of cold plasma technology in food packaging. Trends in Food Science & Technology, 35(1), 5-17. https://doi.org/10.1016/j.tifs.2013.10.009
  • Patel, M.K., Hansson, F., Pitkänen, O., Geng, S., Oksman, K. (2022). Biopolymer Blends of Poly(lactic acid) and Poly(hydroxybutyrate) and Their Functionalization with Glycerol Triacetate and Chitin Nanocrystals for Food Packaging Applications. ACS Applied Polymer Materials, 4(9), 6592-6601. https://doi.org/10.1021/acsapm.2c00967
  • Plastics Europe – A report. Plastics – The facts 2022. (2022). Plastics Europe. Retrieved from https://plasticseurope.org/knowledge-hub/plastics-the-facts-2022/
  • Reimer, V., Künkel, A., Philipp, S. (2008). An Eco Efficiency Evaluation: Bio-Sense or Nonsesne. Kunstoffe International. Retrieved from https://plastics-rubber.basf.com/global/en/performance_polymers/products/ecoflex.html
  • Rosenboom, J.-G., Langer, R., Traverso, G. (2022). Bioplastics for a circular economy. Nature Reviews Materials, 7(2), 117-137. https://doi.org/10.1038/s41578-021-00407-8
  • Singha, S., Hedenqvist, M.S. (2020). A Review on Barrier Properties of Poly(Lactic Acid)/Clay Nanocomposites. Polymers, 12(5), 1095. https://doi.org/10.3390/polym12051095
  • Starkova, O., Gagani, A.I., Karl, C.W., Rocha, I.B.C.M., Burlakovs, J., Krauklis, A.E. (2022). Modelling of Environ-mental Ageing of Polymers and Polymer Composites – Durability Prediction Methods. Polymers, 14(5), 907. https://doi.org/10.3390/polym14050907
  • Wang, S., Daelemans, L., Fiorio, R., Gou, M., D’hooge, D.R., De Clerck, K., Cardon, L. (2019). Improving Mechanical Properties for Extrusion-Based Additive Manufacturing of Poly(Lactic Acid) by Annealing and Blending with Poly(3-Hydroxybutyrate). Polymers, 11(9), 1529. https://doi.org/10.3390/polym11091529
  • White, K., Lin, L., Dahl, D.W., Ritchie, R.J.B. (2016). When Do Consumers Avoid Imperfections? Superficial Packaging Damage as a Contamination Cue. Journal of Marketing Research, 53(1), 110-123. https://doi.org/10.1509/jmr.12.0388
  • Yuniarto, K., Welt, B.A. (2017). Morphological, Thermal and Oxygen Barrier Properties Plasticized Film Polylactic Acid. Journal of Applied Packaging Research, 9(3).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-abc5fb6c-b743-4692-b5d6-a4dd85dd3b7e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.