Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The Revised Universal Soil Loss Equation (RUSLE) has enormous potential for integrating remote sensing and Geographical Information System (GIS) technologies for producing accurate and inexpensive assessments of soil erosion. In this study, the RUSLE method was applied to the Esil (Ishim) River basin (ERB), which is situated in Northern and Central Kazakhstan. The northern part of the ERB extends through the Tyumen and Omsk regions of the Russian Federation to the confluence of the Irtysh River. This article may be of interest to experts and specialists in the field of agriculture, as the findings can assist agricultural producers and government entities in making decisions that prevent soil degradation and promote optimal cropping systems for land and crop cultivation. The objective of this research is to detect, estimate and map areas of land plots most vulnerable to potential soil erosion within the ERB, using the RUSLE model under Arc GIS 10.2. The results reveal that average annual soil loss during the study period ranges from 0 to 32 (t y−1) and that 108,007.5 km2 (48%) of the ERB has no erosion. The remainder of the basin is prone to soil erosion ranging from 1 to 32 t ha−1 y−1, which comprises 117,216.9 km2 (52%), and total soil erosion is 565,368.7 (t y−1). Soil erosion in the ERB is relatively moderate due to low hill steepness and low annual precipitation (198–397 mm). Exceptions occur in plots which feature high slope length steepness, which are scattered throughout the region.
Wydawca
Czasopismo
Rocznik
Tom
Strony
921--938
Opis fizyczny
Bibliogr. 60 poz.
Twórcy
autor
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, 818 South Beijing Road, Urumqi 830011, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Regional State Enterprise Kazhydromet, Astana 010000, Kazakhstan
- Faculty of Geography and Environmental Sciences, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
autor
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, 818 South Beijing Road, Urumqi 830011, China
autor
- Institute of Geography, Astana 010000, Kazakhstan
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, 818 South Beijing Road, Urumqi 830011, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Department of Geography, University of Florida, Gainesville, USA
autor
- Faculty of Geography and Environmental Sciences, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
autor
- Regional State Enterprise Kazhydromet, Astana 010000, Kazakhstan
autor
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, 818 South Beijing Road, Urumqi 830011, China
autor
- Regional State Enterprise Kazhydromet, Astana 010000, Kazakhstan
Bibliografia
- 1. Abu Hammad A (2011) Watershed erosion risk assessment and management utilizing revised universal soil loss equation-geographic information systems in the Mediterranean environments. Water Environ J 25(2):149–162. https://doi.org/10.1111/j.1747-6593.2009.00202.x
- 2. Adediji A, Tukur A, Adepoju K (2010) Assessment of revised universal soil loss equation (RUSLE) in Katsina area, Katsina state of Nigeria using remote sensing (RS) and geographic information system (GIS). Iran J Energy Environ 1(3):255–264. https://www.researchgate.net/publication/49593936_Assessment_of_Revised_Universal_Soil_Loss_Equation_RUSLE_in_Kastina_Area_Kastina_State_of_Nigeria_using_Remote_Sensing_RS_and_Geographic_Information_System_GIS
- 3. Alkharabsheh MM, Alexandridis T, Bilas G, Misopolinos N, Silleos N (2013) Impact of land cover change on soil erosion hazard in northern Jordan using remote sensing and GIS. Proc Environ Sci 19:912–921. https://doi.org/10.1016/j.proenv.2013.06.101
- 4. Apazhev AK, Shekhikhachev YuA, Fiapshev AG (2016) Analysis of factors affecting the occurrence and development of erosion processes on sloping lands. Innovative science, (3-3 (15)). (Aпaжeв AК, Шeкиxaчeв ЮA, и Фиaпшeв AГ (2016) Aнaлиз фaктopoв, влияющиx нa вoзникнoвeниe и paзвитиe эpoзиoнныx пpoцeccoв нa cклoнoвыx зeмляx. Иннoвaциoннaя нayкa, (3-3 (15))). https://cyberleninka.ru/article/n/analiz-faktorov-vliyayuschih-na-vozniknovenie-i-razvitie-erozionnyh-protsessov-na-sklonovyh-zemlyah
- 5. Bao Le Q, Nkonya E, Mirzabaev A (2014) Biomass productivity-based mapping of global land degradation hotspots. ZEF discussion papers on development policy, 193. https://www.econstor.eu/handle/10419/106616
- 6. Blanco H, Lal R (2010) Soil and water conservation. Principles of soil conservation and management. Springer, Berlin, p 2
- 7. Bouguerra H, Bouanani A, Khanchoul K, Derdous O, Tachi SE (2017) Mapping erosion prone areas in the Bouhamdane watershed (Algeria) using the Revised Universal Soil Loss Equation through GIS. J Water Land Dev 32(1):13–23. https://doi.org/10.1515/jwld-2017-0002
- 8. Chen T, Niu RQ, Li PX, Zhang LP, Du B (2011) Regional soil erosion risk mapping using RUSLE, GIS, and remote sensing: a case study in Miyun Watershed, North China. Environ Earth Sci 63(3):533–541. https://doi.org/10.1007/s12665-010-0715-z
- 9. Derpsch R, Friedrich T (2009) Development and current status of no-till adoption in the world. In: Paper presented at the proceedings on CD, 18th triennial conference of the international soil tillage research organization (ISTRO), Izmir, Turkey, June 15–19, 2009, http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.560.4625&rep=rep1&type=pdf
- 10. Didoné EJ, Minella JPG, Evrard O (2017) Measuring and modelling soil erosion and sediment yields in a large cultivated catchment under no-till of Southern Brazil. Soil Tillage Res 174:24–33. https://doi.org/10.1016/j.still.2017.05.011
- 11. Farhan Y, Zregat D, Farhan I (2013) Spatial estimation of soil erosion risk using RUSLE approach, RS, and GIS techniques: a case study of Kufranja Watershed, Northern Jordan. J Water Resour Prot 5(12):1247–1261. https://doi.org/10.4236/jwarp.2013.512134
- 12. Food and Agricultural Organization of the United Nations (FAO) (2015) Status of the world’s soil resources report. FAO, Rome
- 13. Foster GR, Yoder DC, Weesies GA, McCool DK, McGregor KC, Bingner RL (2003) Revised universal soil loss equation version 2. User’s reference guide, USDA-ARS, Washington, DC, USA
- 14. Ganasri BP, Ramesh H (2016) Assessment of soil erosion by RUSLE model using remote sensing and GIS—a case study of Nethrevathi Basin. Geosci Front 7(2016):953–961. https://doi.org/10.1016/j.gsf.2015.10.007
- 15. Gupta R, Kienzler K, Martius C, Mirzabaev A, Oweis T, De Pauw E, Thomas R (2009) Research prospectus: a vision for sustainable land management research in Central Asia. ICARDA Central Asia and Caucasus program. Sustainable agriculture in Central Asia and the Caucasus series, 1, 84. https://www.researchgate.net/publication/235792167/download
- 16. Issaka S, Ashraf MA (2017) Impact of soil erosion and degradation on water quality: a review. Geol Ecol Landsc 1(1):1–11. https://doi.org/10.1080/24749508.2017.1301053
- 17. Jiang B, Bamutaze Y, Pilesjö P (2014) Climate change and land degradation in Africa: a case study in the Mount Elgon region, Uganda. Geo-Spat Inf Sci 17(1):39–53. https://doi.org/10.1080/10095020.2014.889271
- 18. Jones A, Panagos P, Barcelo S, Bouraoui F, Bosco C, Dewitte O, Hiederer R (2012) The state of soil in Europe—a contribution of the JRC to the EEA Environment State and Outlook Report—SOER 2010. Publications Office of the European Union, Luxembourg, 76. https://doi.org/10.2788/77361
- 19. Kalb TJ, Mavlyanova RF (2005) Vegetable production in Central Asia: status and perspectives (vol 5, no 618). AVRDC-World Vegetable Center
- 20. Karentaev EA, Bimentin GA, Uzbaev MB, Kazhenov MA, Karzhanova JK, Bekmukashev KA, Aidarbekov TN, Seitova AS, Satybaldina LS, Zhinibekuly E, Abdili ME, Amreeva AM, Krykpaev AD (2018) Consolidated analytical report on the state and use of the lands of the Republic of Kazakhstan for 2017. Ministry of Agriculture of the Republic of Kazakhstan, Land Management Committee. Astana (Кapeнтaeв, EA, Бимeндинa MБ, Узбaeв MA, Кaжeнoв ЖК, Кapжaнoвa КA, Бeкмyкaшeв TH, Aйдapбeкoв AC, Ceитoвa ГA, Caтыбaлдинa ЛC, Жәнiбeкұлы E, Әбдiғaли ME, Aмpeeвa AM, Кpыкпaeвa AД (2018) Cвoдный aнaлитичecкий oтчeт o cocтoянии и иcпoльзoвaнии зeмeль Pecпyблики Кaзaxcтaн зa 2017 гoд. Mиниcтepcтвo ceльcкoгo xoзяйcтвa PК, Кoмитeт пo yпpaвлeнию зeмeльными pecypcaми. Acтaнa. http://mgov.kz/wp-content/uploads/2018/avgust/25.08/kuzrotchet.pdf)
- 21. Kienzler KM, Lamers J, McDonald A, Mirzabaev A, Ibragimov N, Egamberdiev O, Ruzibaev E, Akramkhanov A (2012) Conservation agriculture in Central Asia—what do we know and where do we go from here? Field Crops Res 132:95–105. https://doi.org/10.1016/j.fcr.2011.12.008
- 22. Klebanovich NV, Efimova IA, Prokopovich SN (2016) Soils and land resources of Kazakhstan: studies. materials for special students 1-56 02 02 “Geoinformation systems”, p 46 (Клeбaнoвич, H.B, Eфимoвa ИA, Пpoкoпoвич CH (2016) Пoчвы и зeмeльныe pecypcы Кaзaxcтaнa: yчeб. мaтepиaлы для cтyдeнтoв cпeц. 1-56 02 02 « Гeoинфopмaциoнныe cиcтeмы » . Cтp 46)
- 23. Koshim A, Karatayev M, Clarke ML, Nock W (2018) Spatial assessment of the distribution and potential of bioenergy resources in Kazakhstan. Adv Geosci 45:217–225. https://doi.org/10.5194/adgeo-45-217-2018
- 24. Kruseman G, Bade J (1998) Agrarian policies for sustainable land use: bioeconomic modelling to assess the effectiveness of policy instruments. Agric Syst 58(3):465–481. https://doi.org/10.1016/S0308-521X(98)00041-9
- 25. Lezin VA (1999) Rivers of the Tyumen region (southern regions). Reference manual. Tyumen: Vector Book Publishing House, 196. (Лёзин BA (1999) Peки Tюмeнcкoй oблacти (южныe paйoны). Cпpaвoчнoe пocoбиe. Tюмeнь: Издaтeльcтвo Beктop Бyк, cтp 196)
- 26. Liang L, Wenpeng D, Huimin Y, Lin Z, Yu D (2017) Spatio-temporal Patterns of Vegetation Change in Kazakhstan from 1982 to 2015. J Resour Ecol 8(4):378–384. https://doi.org/10.5814/j.issn.1674-764x.2017.04.009
- 27. Litvin LF (2002) Geography of soil erosion on agricultural lands of Russia. IKC Akademkniga, Moscow, 255. Литвин ЛФ (2002) Гeoгpaфия эpoзии пoчв ceльcкoxoзяйcтвeнныx зeмeль Poccии. AкaдeмКнигa, Mocквa, cтp 255
- 28. Mirzabaev A (2013) Climate volatility and change in Central Asia: economic impacts and adaptation. Doctoral thesis at Agricultural Faculty, University of Bonn. urn:nbn:de:hbz:5n-3238
- 29. Mirzabaev A, Ahmed M, Werner J, Pender J, Louhaichi M (2016) Rangelands of Central Asia: challenges and opportunities. J Arid Land 8(1):93–108. https://doi.org/10.1007/s40333-015-0057-5
- 30. Mirzabaev A, Strokov A, Krasilnikov P (2018) The impact of land degradation on agricultural profits and poverty in Central Asia. In: 30th international conference of agricultural economists, Vancouver, July 28–August 2, 2018
- 31. Morgan RPC (2009) Soil erosion and conservation. Wiley, New York
- 32. Mueller L, Saparov A, Lischeid G (2013) Novel measurement and assessment tools for monitoring and management of land and water resources in agricultural landscapes of Central Asia. Springer, Berin. https://doi.org/10.1007/978-3-319-01017-5
- 33. Nkonya E, Mirzabaev A, Von Braun J (eds) (2016) Economics of land degradation and improvement: a global assessment for sustainable development. Springer, Berlin p, p 695. https://doi.org/10.1007/978-3-319-19168-3
- 34. Pagiola S (1996) Price policy and returns to soil conservation in semi-arid Kenya. Environ Resour Econ 8:255–271
- 35. Panagos P, Borrelli P, Meusburger K (2015) A new European slope length and steepness factor (LS-Factor) for modeling soil erosion by water. Geosciences 5(2):117–126. https://doi.org/10.3390/geosciences5020117
- 36. Panagos P, Borrelli P, Meusburger K, Yu B, Klik A, Lim KJ et al (2017) Global rainfall erosivity assessment based on high-temporal resolution rainfall records. Sci Rep 7(1):4175. https://doi.org/10.1038/s41598-017-04282-8
- 37. Pashkov SV, Tayzhanova MM (2016) Gully erosion determinants in northern Kazakhstan. News of Tula State University. Earth Sciences, (4), pp 50–63. Пaшкoв CB и Taйжaнoвa MM (2016) Дeтepминaнты oвpaжнoй эpoзии в Ceвepнoм Кaзaxcтaнe. Извecтия Tyльcкoгo гocyдapcтвeннoгo yнивepcитeтa. Hayки o зeмлe, (4), p 50–63
- 38. Pender J, Mirzabaev A, Kato E (2009) Economic analysis of sustainable land management options in Central Asia. Final report for the ADB. IFPRI/ICARDA, 168
- 39. Plekhanov PA (2017) Natural hydrological risks and their prevention in Kazakhstan. Cent Asian J Water Res (CAJWR) 3(1):2084
- 40. Prasannakumar V, Shiny R, Geetha N, Vijith H (2011) Spatial prediction of soil erosion risk by remote sensing, GIS and RUSLE approach: a case study of Siruvani river watershed in Attapady valley, Kerala, India. Environ Earth Sci 64(4):965–972. https://doi.org/10.1007/s12665-011-0913-3
- 41. Prasuhn V, Liniger H, Gisler S, Herweg K, Candinas A, Clément JP (2013) A high-resolution soil erosion risk map of Switzerland as strategic policy support system. Land Use Policy 32:281–291. https://doi.org/10.1016/j.landusepol.2012.11.006
- 42. Renard KG, Freimund JR (1994) Using monthly precipitation data to estimate the R-factor in the revised USLE. J Hydrol 157(1–4):287–306. https://doi.org/10.1016/0022-1694(94)90110-4
- 43. Renard KG, Foster GR, Weesies GA, McCool DK, Yoder DC (1997) Predicting soil erosion by water: a guide to conservation planning with the Revised Universal Soil Loss Equation (RUSLE) (vol 703). Washington, DC: United States Department of Agriculture. https://naldc.nal.usda.gov/download/CAT10827029/PDF
- 44. Rouse J Jr, Haas RH, Schell JA, Deering DW (1974) Monitoring vegetation systems in the Great Plains with ERTS. NASA Spec Publ 351:309
- 45. Shabani F, Kumar L, Esmaeili A (2014) Improvement to the prediction of the USLE K factor. Geomorphology 204:229–234. https://doi.org/10.1016/j.geomorph.2013.08.008
- 46. Shepelev MA (2014) Water and wind erosion and control measures. Kostanay: A. Baytursynov Kostanay State University. (Шeпeлeв MA (2014) Boднaя и вeтpoвaя эpoзия и мepы бopьбы c ними. г. Кocтaнaй: Кocтaнaйcкий Гocyдapcтвeнный Унивepcитeт им. A. Бaйтypcынoвa). https://docs4all.com/2701659/
- 47. Skladchikova GN (1977) Resources of the surface waters of the USSR, the main hydrological characteristics (for 1963–1970. And the entire observation period). Volume 15. Altai, Western Siberia and Northern Kazakhstan. Issue 2. Upper Irtysh, Upper Ishim, Upper Tobol. Gidrometizdat, Leningrad. (Cклaдчикoвa ГH (1977) Pecypcы пoвepxнocтныx вoд CCCP, ocнoвныe гидpoлoгичecкиe xapaктepиcтики (зa 1963-1970 г.г. и вecь пepиoд нaблюдeний). Toм 15. Aлтaй, Зaпaднaя Cибиpь и Ceвepный Кaзaxcтaн. Bыпycк 2. Bepxний Иpтыш, Bepxний Ишим, Bepxний Toбoл. Гидpoмeтиздaт, Лeнингpaд)
- 48. Smailov AA (2013) Kazakhstan in the figures. Astana: Agency of the Republic of Kazakhstan on Statistics. (Cмaилoв AA (2013) Кaзaxcтaн в цифpax. Acтaнa: Aгeнтcтвo Pecпyблики Кaзaxcтaн пo cтaтиcтикe). http://stat.ivisa.com/publishing/20131/%D0%9A%D0%B0%D0%B7.%20%D0%B2%20%D1%86%D0%B8%D1%84%D1%80%D0%B0%D1%85_%D1%80%D1%83%D1%81.pdf
- 49. Takata Y, Funakawa S, Akshalov K, Ishida N, Kosaki T (2007) Spatial prediction of soil organic matter in northern Kazakhstan based on topographic and vegetation information. Soil Sci Plant Nutr 53(3):289–299. https://doi.org/10.1111/j.1747-0765.2007.00142.x
- 50. Vaezi A, Sadeghi H (2011) Evaluating the RUSLE [Revised Universal Soil Loss Equation] model and developing an empirical equation for estimating soil erosion ability factor in a semi-arid region. Span J Agric Res 9(3):912–923
- 51. Van der Knijff J, Jones R, Montanarella L (2000) Soil erosion risk assessment in Europe. European Soil Bureau, European Commission Belgium. https://www.researchgate.net/publication/237727657/download
- 52. Williams JR, Singh V (1995) Computer models of watershed hydrology. chap. The EPIC Model, Water Resources Publications, Highlands Ranch, CO, pp 909–1000
- 53. Wischmeier WH (1976) Use and misuse of the universal soil loss equation. J Soil Water Conserv 31:5–9
- 54. Wischmeier WH, Smith DD (1965) Predicting rainfall erosion losses from cropland east of the Rocky Mountains: guide for selection of practices for soil and water conservation. U. S. Department of Agriculture. Agriculture Handbook. No. 282, p 58
- 55. Wischmeier WH, Smith DD (1978) Predicting rainfall erosion losses: A guide to conservation planning. U.S. Department of Agriculture. Agriculture Handbook No. 537
- 56. Wischmeier WH, Smith DD (1981) Predicting rainfall erosion losses: A guide to conservation planning. Supplement to Agriculture Handbook No. 537, USDA, Washington
- 57. Yapiyev V, Sagintayev Z, Verhoef A, Kassymbekova A, Baigaliyeva M, Zhumabayev D, Jumassultanova S (2017) The changing water cycle: Burabay National Nature Park, Northern Kazakhstan. Wiley Interdisciplinary Reviews: Water 4(5):e1227
- 58. Zaslavsky MN (1983) Erosiology. Moscow: High school, p 320. (Зacлaвcкий MH (1983) Эpoзиoвeдeниe. Mocквa: Bыcшaя шкoлa, cтp 320). https://www.twirpx.com/file/1705401/
- 59. Zhang W, Zhou J, Feng G, Weindorf DC, Hu G, Sheng J (2015) Characteristics of water erosion and conservation practice in arid regions of Central Asia: Xinjiang Province, China as an example. Int Soil Water Conserv Res 3(2):97–111. https://doi.org/10.1016/j.iswcr.2015.06.002
- 60. Zomer RJ, Neufeldt H, Xu J, Ahrends A, Bossio D, Trabucco A, Wang M (2016) Global tree cover and biomass carbon on agricultural land: the contribution of agroforestry to global and national carbon budgets. Sci Rep 6:29987. https://doi.org/10.1038/srep29987
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-abc507f3-a349-419a-8847-6707cd91c21b