PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Selfsimilar processes with stationary increments in the second Wiener chaos

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We study selfsimilar processes with stationary increments in the second Wiener chaos. We show that, in contrast with the first Wiener chaos which contains only one such process (the fractional Brownian motion), there is an infinity of selfsimilar processes with stationary increments living in the Wiener chaos of order two. We prove some limit theorems which provide a mechanism to construct such processes.
Rocznik
Strony
167--186
Opis fizyczny
Bibliogr. 12 poz.
Twórcy
autor
  • Department of Mathematics, Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
autor
  • Laboratoire Paul Painlevé, U.F.R. Mathématiques, Université de Lille 1, F-59655 Villeneuve d’Ascq, France
Bibliografia
  • [1] J.-C. Breton and I. Nourdin, Error bounds on the non-normal approximation of Hermite power variations of fractional Brownian motion, Electron. Comm. Probab. 13 (2008), pp. 482-493.
  • [2] P. Breuer and P. Major, Central limit theorems for nonlinear functionals of Gaussian fields, J. Multivariate Anal. 13 (1983), pp. 425-441.
  • [3] R. L. Dobrushin and P. Major, Non-central limit theorems for non-linear functionals of Gaussian fields, Z. Wahrsch. Verw. Gebiete 50 (1979), pp. 27-52.
  • [4] P. Embrechts and M. Maejima, Selfsimilar Processes, Princeton University Press, Princeton, New York, 2002.
  • [5] R. Fox and M. S. Taqqu, Multiple stochastic integrals with dependent integrators, J. Multivariate Anal. 21 (1987), pp. 105-127.
  • [6] T. Mori and H. Oodaira, The law of the iterated logarithm for self-similar processes represented by multiple Wiener integrals, Probab. Theory Related Fields 71 (1986), pp. 367-391.
  • [7] I. Nourdin and G. Peccati, Cumulants on Wiener space, J. Funct. Anal. 258 (2010), pp. 3775-3791.
  • [8] D. Nualart, Malliavin Calculus and Related Topics, second edition, Springer, 2006.
  • [9] M. Rosenblatt, Some limit theorems for partial sums of quadratic forms in stationary Gaussian variables, Z. Wahrsch. Verw. Gebiete 49 (1979), pp. 125-132.
  • [10] G. Samorodnitsky and M. S. Taqqu, Stable Non-Gaussian Random Variables, Chapman and Hall, London 1994.
  • [11] M. S. Taqqu, Weak convergence to the fractional Brownian motion and to the Rosenblatt process, Z. Wahrsch. Verw. Gebiete 31 (1975), pp. 287-302.
  • [12] C. A. Tudor, Analysis of the Rosenblatt process, ESAIM Probab. Stat. 12 (2008), pp. 230-257.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-abc2bf37-227b-4bbf-92c1-18be3dfb62d3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.