Identyfikatory
Warianty tytułu
Currently available surfactants and their micellar structures formed in aqueous solutions
Języki publikacji
Abstrakty
This article presents currently available surfactant ionic liquids as well as functionalized and polymeric surfactants. Ionic liquids (ILs) are organic salts of melting points below 100°C. They have attracted much attention due to their unique physicochemical properties such as low volatility, high thermal stability, low toxicity, high ionic conductivity, capacity to dissolve organic, inorganic and polymeric materials [1]. ILs can be used as “green” solvents in electrochemistry, extraction, chromatography, catalysis, chemical and enzymatic reactions, and synthesis of new materials [2–4]. Ionic liquids are less corrosive than classical molten salts and therefore are used as electrolytes in batteries or solar cells [5]. Like other salts, ionic liquids are formed by ions but at least one of them is an organic ion. Moreover cations and anions differ significantly in their geometrical characteristics [1]. ILs with long alkyl chains and pronounced hydrophilic and lipophilic molecular fragments have an obvious amphiphilic nature and are called the surface active ionic liquids, SAILs, because they show combined properties of ILs and surfactants [6]. Recently, there is ever-increasing interest in SAILs based on gemini surfactants (Figs 6 and 7 [21, 22]), dodecyl sulfate, DS (Fig. 8a) and aerosol-OT, AOT (Fig. 8b) anions [23–25], alkylpyridinium (Fig. 1b [11]), imidazolium (Figs 1a and 3 [13, 14, 16]), alkylpyrrolidinium [17, 18], and diisopropylethylammonium, DIPEA [19] cations. Apart from SAILs, in recent years an attention has also been paid to functionalized surfactants such as: bolaform surfactants [32], supra-long chain surfactants [35, 36], calixarene-based surfactants (Fig. 9 [33]). Surfactants of the above types of SAILs and functionalized surfactants have been synthesized and their micellar structures formed in water have been studied. For example, very interesting vesicle systems were observed in aqueous solutions of diisopropylethylamine alkyl carboxylates, [DIPEA]+[CnH2n+1COO]–, for n = 3–9 (Fig. 5 [19]) and in aqueous solutions of the surfactant mixture composed of N-dodecyl-N-methyl-pyrrolidinium and sodium dodecyl sulfate (Fig. 4 [18]). It was found that 1-hexadecyl-3-methyl-imidazolium chloride in aqueous solutions underwent the phase (micellar) transformations upon cooling (Fig. 2 [13]). An important group of polymeric surfactants attracting a great interest in literature is that of triblock copolymers of poly(ethylene oxide) (PEO) and poly(propylene oxide) (PPO), often abbreviated as [EO]a-[PO]b-[EO]a. Recently, these copolymers, also called poloxamers, have been proposed for pharmaceutical use [37–40]. These nonionic surfactants form micelles in aqueous solutions with a core containing the hydrophobic PO blocks and a shell made up of the hydrated EO blocks [41]. The subject of current studies include: the interactions between poloxamers and anionic surfactant, SDS in aqueous solutions [ 42–47], micellization of poloxamers in mixtures of water and organic solvents [48], comparison of association properties of diblock and triblock copolymers [49]. The paper also presents the experimental methods used recently to study surface activity, aggregation behaviors, and micellar structures of surfactants in water.
Wydawca
Czasopismo
Rocznik
Tom
Strony
981--1001
Opis fizyczny
ibliogr. 49 poz., schem.
Twórcy
autor
- Zakład Chemii Fizycznej, Wydział Chemii, Uniwersytet im. Adama Mickiewicza ul. Umultowska 89 b, 61-614 Poznań
Bibliografia
- [1] N.A. Smirnova, E.A. Safonova, Russ. J. Phys. Chem. A, 2010, 84, 1695.
- [2] Ionic liquids in synthesis, P. Wasserscheid, T. Welton [red.], Wiley, Weinheim, 2008.
- [3] Ionic liquids: industrial applications to green chemistry, R.D. Rogers, K.R. Seddon [red.], ACS, Waszyngton, 2002.
- [4] L.A. Aslanov, M.A. Zakharov, N.L. Abramycheva, Ionic liquids among other solvents, Mosk. Gos. Univ., Moskwa, 2005.
- [5] M.C. Buzzeo, R.G. Evans, R.G. Compton, Chem. Phys. Chem., 2004, 5, 1106.
- [6] O.A. El Seoud, P.A.R. Pires, T. Abdel-Moghny, E.L. Bastos, J. Colloid Interface Sci., 2007, 313, 296.
- [7] W. Jiang, Y. Wang, G.A. Voth, J. Phys. Chem. B, 2007, 111, 4812.
- [8] J. Łuczak, J. Hupka, J. Thoming, C. Jungnickel, Colloids Surf. A: Physicochem. Eng. Aspects, 2008, 329, 125.
- [9] K.M. Docherty, J.K. Dixon, C.F. Kulpa Jr, Biodegradation, 2007, 18, 481.
- [10] A. Cornellas, L. Perez, F. Comelles, I. Ribosa, A. Manresa, M.T. Garcia, J. Colloid Interface Sci., 2011, 355, 164.
- [11] N.V. Sastry, N.M. Vaghela, P.M. Macwan, S.S. Soni, V.K. Aswal, A. Gibaud, J. Colloid Interface Sci., 2012, 371, 52.
- [12] P.D. Galgano, O.A. El Soud, J. Colloid Interface Sci., 2010, 345, 1.
- [13] F.-G. Wu, J.-S. Yu, S.-F. Sun, H.-Y. Sun, J.-J. Luo, Z.-W. Yu, Langmuir, 2012, 28, 7350.
- [14] L. Shi, L. Zheng, J. Phys. Chem. B, 2012, 116, 2162.
- [15] T.L. Greaves, C.J. Drummond, Chem. Rev., 2008, 108, 206.
- [16] V. Chauhan, S. Singh, A. Bhadani, Colloids Surf. A: Physicochem. Eng. Aspects, 2012, 395, 1.
- [17] J. Li, M. Zhao, L. Zheng, Colloids Surf. A: Physicochem. Eng. Aspects, 2012, 396, 16.
- [18] M. Zhao, J. Yuan, L. Zheng, Colloids Surf. A: Physicochem. Eng. Aspects, 2012, 407, 116.
- [19] M. Anouti, P.-Y. Sizaret, C. Ghimbeu, H. Galiano, D. Lemordant, Colloids Surf. A: Physicochem. Eng. Aspects, 2012, 395, 190.
- [20] H. Li, C. Yu, R. Chen, Jn Li, Jg Li, Colloids Surf. A: Physicochem. Eng. Aspects, 2012, 395, 116.
- [21] S. Zhang, H. Yan, M. Zhao, L. Zheng, J. Colloid Interface Sci., 2012, 372, 52.
- [22] A. Pal, S. Datta, V. K. Aswal, S. Bhattacharya, J. Phys. Chem. B, 2012, 116, 13239.
- [23] P. Brown, C. Butts, R. Dyer, J. Eastoe, I. Grillo, F. Guittard, S. Rogers, R. Heenan, Langmuir, 2011, 27, 4563.
- [24] P. Brown, C.P. Butts, J. Eastoe, D. Fermin, I. Grillo, H.-C. Lee, D. Parker, D. Plana, R.M. Richardson, Langmuir, 2012, 28, 2502.
- [25] J. Jiao, B. Dong, H. Zhang, Y. Zhao, X. Wang, R. Wang, L. Yu, J. Phys. Chem. B, 2012, 116, 958.
- [26] P. Wasserscheid, R.V. Hal, B. Andreas, Green Chem., 2002, 4, 400.
- [27] C.-W. Cho, T.P.T. Pham, Y.-C. Jeon, K. Vijayaraghavan, W.-S. Choe, Y.-S. Yun, Chemosphere, 2007, 69, 1003.
- [28] W.L. Hough, M. Smiglak, H. Rodriguez, R.P. Swatloski, S.K. Spear, D.T. Daly, J. Pernak, J.E. Grisel, R.D. Carliss, M.D. Soutullo, J.J.H. Davis, R.D. Rogers, New J. Chem., 2007, 31, 1429.
- [29] N.J. Turro, A. Yekta, J. Am. Chem. Soc., 1978, 100, 5951.
- [30] R.M. Fuoss, V.F.H. Chu, J. Am. Chem. Soc., 1951, 73, 949.
- [31] R.M. Fuoss, D. Edelson, J. Am. Chem. Soc., 1951, 73, 269.
- [32] S.J. Holder, B.C. Sriskantha, S.A. Bagshaw, I.J. Bruce, J. Colloid Interface Sci., 2012, 367, 293.
- [33] N. Basilio, L. Garcia-Rio, M. Martin-Pastor, Langmuir, 2012, 28, 2404.
- [34] T.W. Davey, W.A. Ducker, A.R. Hayman, J. Simpson, Langmuir, 1998, 14, 3210.
- [35] T. Yoshimura, N. Chiba, K. Matsuoka, J. Colloid Interface Sci., 2012, 374, 157.
- [36] K. Matsuoka, N. Chiba, T. Yoshimura, J. Colloid Interface Sci., 2012, 379, 72.
- [37] V.Y. Alakhov, A.V. Kabanov, Expert Opin. Invest Drugs, 1998, 7, 1453.
- [38] P. Alexandridis, Curr. Opin. Colloid Interface Sci., 1996, 1, 490.
- [39] M.W. Edens, Polyoxyalkylene clock copolymers, w: Nonionic surfactants, pod red. V. Nace’a, Dekker, CRC Press, Nowy Jork, 1996.
- [40] M. El Fray, J. Gajowy, Polimery, 2012, 57, 255.
- [41] Y. Zhang, Y.M. Lam, J. Nanosci. Nanotechnol., 2006, 6, 1.
- [42] C.S. Ouderc-Azouani, J. Sidhu, T.K. Georgiou, Langmuir, 2004, 20, 6458.
- [43] T. Thurn, S. Couderc, J. Sidhu, Langmuir, 2002, 18, 9267.
- [44] R.C. da Silva, G. Olofsson, K. Schillen, J. Phys. Chem. B, 2002, 106, 1239.
- [45] R. Ivanova, P. Alexandridis, B. Lindman, Colloids Surf. A: Physicochem. Eng. Aspects, 2001, 183, 41.
- [46] P.R. Desai, N.J. Jain, R.K. Sharma, Colloids Surf. A: Physicochem. Eng. Aspects, 2001, 178, 57.
- [47] M. Youssry, F. Asaro, L. Coppola, L. Gentile, I. Nicotera, J. Colloid Interface Sci., 2010, 342, 348.
- [48] B. Sarkar, V. Ravi, P. Alexandridis, J. Colloid Interface Sci., 2013, 390, 137.
- [49] A. Kelarakis, C. Chaibundit, M.J. Krysmann, V. Havredaki, K. Viras, I.W. Hamley, J. Colloid Interface Sci., 2009, 330, 67.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-abc1727e-649f-4b7d-9d22-a569dd5e9798