Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Computational Materials Engineering (CME) is a high technological approach used to design and develop new materials including the physical, thermal and mechanical properties by combining materials models at multiple techniques. With the recent advances in technology, the importance of microstructural design in CME environments and the contribution that such an approach can make in the estimation of material properties in simulations are frequently discussed in scientific, academic, and industrial platforms. Determination of the raw material characteristics that can be modeled in a virtual environment at an atomic scale by means of simulation programs plays a big role in combining experimental and virtual worlds and creating digital twins of the production chain and the products. In this study, a new generation, alternative and effective approach that could be used to the development of Al-Si based wheel casting alloys is proposed. This approach is based on the procedure of optimizing the physical and thermodynamic alloy properties developed in a computer environment with the CME technique before the casting phase. This article demonstrates the applicability of this approach in alloy development studies to produce Al-Si alloy wheels using the low pressure die casting (LPDC) method. With this study, an alternative and economical way is presented to the alloy development studies by trial and error in the aluminum casting industry. In other respects, since the study is directly related to the automotive industry, the reduction in fuel consumption in vehicles is an expected effect, as the new alloy aims to reduce the weight of the wheels. In addition to conserving energy, reducing carbon emissions also highlights the environmental aspects of this study.
Czasopismo
Rocznik
Tom
Strony
35--46
Opis fizyczny
Bibliogr. 35 poz., rys., tab., wykr.
Twórcy
autor
- Dokuz Eylul University, Dept. of Metallurgical and Materials Engineering, İzmir, Turkey
autor
- Dokuz Eylul University, Dept. of Metallurgical and Materials Engineering, İzmir, Turkey
autor
- Manisa Celal Bayar University, Dept. of Metallurgical and Materials Engineering, Manisa, Turkey
Bibliografia
- [1] Cullen, J.M. & Allwood, J.M. (2013). Mapping the global flow of aluminum: from liquid aluminum to end-use goods. Environmental Science & Technology. 47(7), 3057-3064. DOI:10.1021/es304256s.
- [2] Liu, G. & Müller, D.B. (2012). Addressing sustainability in the aluminum industry: a critical review of life cycle assessments. Journal of Cleaner Production. 35, 108-117. DOI:10.1016/j.jclepro.2012.05.030.
- [3] Ashkenazi, D. (2019). How aluminum changed the world: A metallurgical revolution through technological and cultural perspectives. Technological Forecasting and Social Change. 143, 101-113. DOI:10.1016/j.techfore.2019.03.011.
- [4] Musfirah, A.H. & Jaharah, A.G. (2012). Magnesium and aluminum alloys in automotive industry. Journal of Applied Sciences Research. 8(9): 4865-4875.
- [5] Davies, J.R. (1993). Aluminum and Aluminum Alloys. ASM International, OH.
- [6] Mondolfo, L.F. (1976). Aluminum alloys: Structure and Properties. London, Butterworths.
- [7] Rana, R.S., Purohit, R. & Das S. (2012). Reviews on the influences of alloying elements on the microstructure and mechanical properties of aluminum alloys and aluminum alloy composites. International Journal of Scientific and Research Publications. 2(6).
- [8] Heusler, L. & Schneider, W. (2002). Influence of alloying elements on the thermal analysis results of Al–Si cast alloys. Journal of Light Metals. 2(1), 17-26. DOI:10.1016/s1471-5317(02)00009-3.
- [9] Miller, W., Zhuang, L., Bottema, J., Wittebrood, A., De Smet, P., Haszler, A. & Vieregge, A. (2000). Recent development in aluminium alloys for the automotive industry. Materials Science and Engineering: A. 280(1), 37-49. DOI:10.1016/s0921-5093(99)00653-x.
- [10] Krol, M., Tanski, T., Snopinski, P. & Tomiczek, B. (2017). Structure and properties of aluminium–magnesium casting alloys after heat treatment. Journal of Thermal Analysis and Calorimetry. 127, 299-308.
- [11] Callister, W.D. (1997). Materials science and engineering: An introduction. New York: John Wiley & Sons.
- [12] Allison J., Backman D. & Christodoulou L. (2006). Integrated computational materials engineering: A new paradigm for the global materials profession. JOM. 58, 25-27.
- [13] Allison, J., Li M., Wolverton, C. & Su, X.M. (2006). Virtual aluminum castings: an industrial application of ICME. JOM. 58, 28-35.
- [14] Schmid-Fetzer, R. & Gröbner, J. (2001). Focused development of magnesium alloys using the CALPHAD approach. Advanced Engineering Materials. 3(12), 947-961. DOI:10.1002/1527-2648(200112)3:1.
- [15] Jung, J.-G., Cho, Y.-H., Lee, J.-M., Kim, H.-W. & Euh, K. (2019). Designing the composition and processing route of aluminum alloys using CALPHAD: Case studies. CALPHAD. 64, 236-247. DOI:10.1016/j.calphad.2018.12.010.
- [16] Jha, R. & Dulikravich, G.S. (2020). Solidification and heat treatment simulation for aluminum alloys with scandium addition through CALPHAD approach. Computational Materials Science. 182, 109749. DOI: 10.1016/j.commatsci.2020.109749.
- [17] Assadiki A., Esin V.A., Bruno, M. & Martinez, R. (2018). Stabilizing effect of alloying elements on metastable phases in cast aluminum alloys by CALPHAD calculations. Computational Materials Science. 145, 1-7. DOI:10.1016/j.commatsci.2017.12.056.
- [18] Jiao, X.Y., Liu, C.F., Guo, Z.P., Tong, G.D., Ma, S.L., Bi, Y. et al. (2020). The characterization of Fe-rich phases in a high-pressure die cast hypoeutectic aluminum-silicon alloy. Journal of Materials Science & Technology. 51, 54-62. DOI:10.1016/j.jmst.2020.02.040.
- [19] Pehlivanoglu, U., Yağcı, T. & Çulha, O. (2021). Effects of air-cooling-hole geometries on a low-pressure die-casting process. Materials and Technology. 55(4), 549-558. DOI:10.17222/mit.2021.043
- [20] Lumley, R. (2011). Fundamentals of Aluminium Metallurgy. Wood Publishing Limited, Oxford, Cambridge, Philadelphia, New Delhi.
- [21] Snugovsky, L., Major, J.F., Perovic, D.D. & Rutter, J.W. (2000). Silicon segregation in aluminium casting alloy. Materials Science and Technology. 16(2), 125-128. DOI:10.1179/026708300101507604.
- [22] Ebhota, W.S. & Jen, T.C. (2017). Effects of modification techniques on mechanical properties of Al-Si cast alloys. In Subbarayan Sivasankaran (Eds.), Aluminium Alloys - Recent Trends in Processing, Characterization, Mechanical Behavior and Applications. London, UK: IntechOpen. DOI:10.5772/intechopen.70391.
- [23] Jiang, W., Yu, W., Li, J., You, Z., Li, C. & Lv, X. (2018). Segregation and morphological evolution of Si phase during electromagnetic directional solidification of hypereutectic Al-Si alloys. Materials. 12(1), 10. DOI:10.3390/ma12010010.
- [24] Yıldırım, M. & Özyürek, D. (2013). The effects of Mg amount on the microstructure and mechanical properties of Al–Si–Mg alloys. Materials and Design. 51, 767-774. DOI: 10.1016/j.matdes.2013.04.089.
- [25] Kumar V., Mehdi, H., Kumar A. (2015). Effect of silicon content on the mechanical properties of aluminum alloy. International Research Journal of Engineering and Technology. 2(4), 1326-1330.
- [26] Li, W., Cui, S., Han, J. & Xu, C. (2006). Effect of silicon on the casting properties of Al-5.0% Cu alloy. Rare Metals. 25, 133-135. DOI:10.1016/s1001-0521(08)60067-4
- [27] Yang, Y.S. & Tsao, C.Y.A. (1997). Viscosity and structure variations of Al-Si alloy in the semi-solid state. Journal of Materials Science, 32(8), 2087-2092. DOI: 10.1023/A:1018522805543.
- [28] Campbell, J. (2003). Castings: the new metallurgy of cast metals. 2nd Edition, Elsevier Butterworth-Heinemann, Oxford.
- [29] Atasoy, Ö.A. (1990). Ötektik Alaşımlar: Katılaşma Mekanizmaları ve Uygulamaları. İstanbul Technical University, İstanbul.
- [30] Sahoo, M. & Sahu, S. (2014). Principles of metal casting. 3rd Edition, McGraw-Hill Education.
- [31] Clemex, Dendrite Arm Spacing in Aluminum Alloy Report. Retrieved August 24, 2021, from https://clemex.com/analysis/dentritic-arm-spacing/.
- [32] Peres, M.D., Siqueira, C.A. & Garcia, A. (2004). Macrostructural and microstructural development in Al-Si alloys directionally solidified under unsteady-state conditions. Journal of Alloys and Compounds. 381(1-2), 168-181. DOI: 10.1016/j.jallcom.2004.03.107.
- [33] Spear, R.E. & Gardner, G.R. (1963). Dendrite cell size. AFS Transactions. 71, 209-215.
- [34] Rhadhakrishna, K, Seshan, S. & Seshadri, M.R. (1980). Dendrite arm spacing in aluminium alloy castings, AFS Transactions. 88, 695-702.
- [35] Flemings, M. Kattamis, T.Z. & Bardes, B.P. (1991). Dendrite arm spacing in aluminium alloys. AFS Transactions. 99, 501-506.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-abbeaac1-5dfd-4b6f-acce-e227ac3a1b56