Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Fused Deposition Modeling (FDM) is a widely used 3D printing technology that can create a diverse range of objects. However, achieving the desired mechanical properties of printed parts can be challenging due to various printing parameters. Residual stress is a critical issue in FDM, which can significantly impact the performance of printed parts. In this study, we used Digimat-AM software to conduct numerical simulations and predict residual stress in Acrylonitrile Butadiene Styrene (ABS) material printed using FDM. We varied six printing parameters, including printing temperature, printing speed, and infill percentage, with four values for each parameter. Our results showed that residual stress was positively correlated with printing temperature, printing speed, and infill percentage, and negatively correlated with layer thickness. Bed temperature did not have a significant effect on residual stress. Finally, using a concentric infill pattern produced the lowest residual stress. The methodology used in this study involved conducting numerical simulations with Digimat-AM software, which allowed us to accurately predict residual stress in FDM-printed ABS parts. The simulations were conducted by systematically varying six printing parameters, with four values for each parameter. The resulting data allowed us to identify correlations between residual stress and printing parameters, and to determine the optimal printing conditions for minimizing residual stress. Our findings contribute to the existing literature by providing insight into the relationship between residual stress and printing parameters in FDM. This information is important for designers and manufacturers who wish to optimize their FDM printing processes for improved part performance. Overall, our study highlights the importance of considering residual stress in FDM printing, and provides valuable information for optimizing the printing process to reduce residual stress in ABS parts.
Czasopismo
Rocznik
Tom
Strony
279--287
Opis fizyczny
Bibliogr. 40 poz., rys., tab.
Twórcy
autor
- Department of Railway Vehicles and Vehicle System Analysis, Faculty of Transportation Engineering and Vehicle Engineering, Budapest University of Technology and Economics, H-1111 Budapest Műegyetem rkp.3, Hungary
autor
- Department of Railway Vehicles and Vehicle System Analysis, Faculty of Transportation Engineering and Vehicle Engineering, Budapest University of Technology and Economics, H-1111 Budapest Műegyetem rkp.3, Hungary
Bibliografia
- 1. Abdulhameed, O., Al-Ahmari, A., Ameen, W., Mian, S. H., 2019. Additive manufacturing: Challenges, trends, and applications. Advances in Mechanical Engineering, 11(2), 168781401882288. DOI: 10.1177/1687814018822880
- 1. Ahangar, P., Cooke, M. E., Weber, M. H., Rosenzweig, D. H., 2019. Current Biomedical Applications of 3D Printing and Additive Manufacturing. Applied Sciences, 9(8), 1713. DOI: 10.3390/app9081713
- 2. Alsardia, T., Lovas, -László, Ficzere, -Péter., 2021. Prototype For Fit Investigations. Design of Machines and Structures, 11(1), 5-15. DOI: 10.32972/dms.2021.001
- 3. Alzyod, H., Ficzere, P., 2021a. Potential Applications Of Additive Manufacturing Technologies In The Vehicle Industry. Design of Machines and Structures, 11(2), 5-13.
- 4. Alzyod, H., Ficzere, P., 2021b. Using Finite Element Analysis in the 3D Printing of Metals. Hungarian Journal of Industry and Chemistry, 49(2), 65-70. DOI: 10.33927/hjic-2021.24
- 5. Alzyod, H., Ficzere, P., 2022. The Influence of the Layer Orientation on Ultimate Tensile Strength of 3D Printed Poly-lactic Acid. Jordan Journal of Mechanical and Industrial Engineering, 16(3), 361-367.
- 6. Baich, L., Manogharan, G., Marie, H., 2015. Study of infill print design on production cost-time of 3D printed ABS parts. International Journal of Rapid Manufacturing, 5(3-4), 308-319. DOI: 10.1504/IJRAPIDM.2015.074809
- 7. Bertevas, E., Férec, J., Khoo, B. C., Ausias, G., Phan-Thien, N., 2018. Smoothed particle hydrodynamics (SPH) modeling of fiber orientation in a 3D printing process. Physics of Fluids, 30(10), 103103. DOI: 10.1063/1.5047088
- 8. Blakey-Milner, B., Gradl, P., Snedden, G., Brooks, M., Pitot, J., Lopez, E., Leary, M., Berto, F., du Plessis, A., 2021. Metal additive manufacturing in aerospace: A review. Materials Design, 209, 110008. DOI: 10.1016/j.matdes.2021.110008
- 9. Casavola, C., Cazzato, A., Moramarco, V., Pappalettera, G., 2017. Residual stress measurement in Fused Deposition Modelling parts. Polymer Testing, 58, 249-255. DOI: 10.1016/j.polymertesting.2017.01.003
- 10. Cattenone, A., Morganti, S., Alaimo, G., Auricchio, F., 2019. Finite Element Analysis of Additive Manufacturing Based on Fused Deposition Modeling: Distortions Prediction and Comparison With Experimental Data. Journal of Manufacturing Science and Engineering, 141(1). DOI: 10.1115/1.4041626
- 11. Chen, R., He, W., Xie, H., Liu, S., 2021. Monitoring the strain and stress in FDM printed lamellae by using Fiber Bragg Grating sensors. Polymer Testing, 93, 106944. DOI: 10.1016/j.polymertesting.2020.106944
- 12. Costa, S. F., Duarte, F. M., Covas, J. A., 2015. Thermal conditions affecting heat transfer in FDM/FFE: a contribution towards the numerical modelling of the process. Virtual and Physical Prototyping, 10(1), 35-46. DOI: 10.1080/17452759.2014.984042
- 13. Cuan-Urquizo, E., Barocio, E., Tejada-Ortigoza, V., Pipes, R., Rodriguez, C., Roman-Flores, A., 2019. Characterization of the Mechanical Properties of FFF Structures and Materials: A Review on the Experimental, Computational and Theoretical Approaches. Materials, 12(6), 895. DOI: 10.3390/ma12060895
- 14. Dasgupta, A., Dutta, P., 2022. A Comprehensive Review on 3D Printing Technology: Current Applications and Challenges. Jordan Journal of Mechanical and Industrial Engineering, 16(4), 529-542.
- 15. Deng, X., Zeng, Z., Peng, B., Yan, S., Ke, W., 2018. Mechanical Properties Optimization of Poly-Ether-Ether-Ketone via Fused Deposition Modeling. Materials 2018, Vol. 11, Page 216, 11(2), 216. DOI: 10.3390/MA11020216
- 16. Fatimatuzahraa, A. W., Farahaina, B., Yusoff, W. A. Y., 2011. The effect of employing different raster orientations on the mechanical properties and microstructure of Fused Deposition Modeling parts. 2011 IEEE Symposium on Business, Engineering and Industrial Applications (ISBEIA), 22-27. DOI: 10.1109/ISBEIA.2011.6088811
- 17. Ferreira, R. T. L., Quelho de Macedo, R., 2017. Residual thermal stress in fused deposition modelling. Procceedings of the 24th ABCM International Congress of Mechanicl Engineering. DOI: 10.26678/ ABCM.COBEM2017.COB17-0124
- 18. Ficzere, P., 2022. The Impact of the Positioning of Parts on the Variable Production Costs in the Case of Additive Manufacturing. Periodica Polytechnica Transportation Engineering, 50(3), 304-308. DOI: 10.3311/ PPtr.15827
- 19. Ficzere, P., Borbas, L., Szebenyi, G., 2017. Reduction possibility of residual stresses from additive manufacturing by photostress method. Materials Today: Proceedings, 4(5), 5797–5802. DOI: 10.1016/j.matpr.2017. 06.048
- 20. Fodran, E., Koch, M., Menon, U., 1996. Mechanical and dimensional characteristics of fused deposition modeling build styles. In 1996 International Solid Freeform Fabrication Symposium.
- 21. Gibson, I., Rosen, D., Stucker, B., 2015. Additive Manufacturing Technologies. Springer New York. DOI: 10.1007/978-1-4939-2113-3
- 22. Hadny, A., Ayun, Q., Triyono, J., Pujiyanto, E., 2022. Optimization of Injection Molding Simulation of Bioabsorbable Bone Screw Using Taguchi Method and Particle Swarm Optimization. Jordan Journal of Mechanical and Industrial Engineering, 16(2), 319-325.
- 23. Horváth, Á. M., Ficzere, P., 2015. Rapid prototyping in medical sciences. Production Engineering Archives, 8, 28-31. DOI: 10.30657/pea.2015.08.07
- 24. Jackson, B., Fouladi, K., Eslami, B., 2022. Multi-Parameter Optimization of 3D Printing Condition for Enhanced Quality and Strength. Polymers, 14(8), 1586. DOI: 10.3390/polym14081586
- 25. Kantaros, A., Karalekas, D., 2013. Fiber Bragg grating based investigation of residual strains in ABS parts fabricated by fused deposition modeling process. Materials & Design, 50, 44-50. DOI: 10.1016/j.matdes. 2013.02.067
- 26. Kechagias, J., Chaidas, D., Vidakis, N., Salonitis, K., Vaxevanidis, N. M., 2022. Key parameters controlling surface quality and dimensional accuracy: a critical review of FFF process. Materials and Manufacturing Processes, 37(9), 963-984. DOI: 10.1080/10426914.2022.2032144
- 27. Le-Bail, A., Maniglia, B. C., Le-Bail, P., 2020. Recent advances and future perspective in additive manufacturing of foods based on 3D printing. Cur-rent Opinion in Food Science, 35, 54-64. DOI: 10.1016/j.cofs.2020.01.009
- 28. Markiz, N., Horváth, E., Ficzere, P., 2020. Influence of printing direction on 3D printed ABS specimens. Production Engineering Archives, 26(3), 127-130. DOI: 10.30657/pea.2020.26.24
- 29. Mohanavel, V., Ashraff Ali, K. S., Ranganathan, K., Allen Jeffrey, J., Ravikumar, M. M., Rajkumar, S., 2021. The roles and applications of additive manufacturing in the aerospace and automobile sector. Materials Today: Proceedings, 47, 405-409. DOI: 10.1016/j.matpr.2021.04.596
- 30. Mousa, A. A., 2014. The Effects of Content and Surface Modification of Filler on the Mechanical Properties of Selective Laser Sintered Polyamide12 Composites. Jordan Journal of Mechanical and Industrial Engineering, 8, 265-274.
- 31. Onwubolu, G. C., Rayegani, F., 2014. Characterization and Optimization of Mechanical Properties of ABS Parts Manufactured by the Fused Deposition Modelling Process. International Journal of Manufacturing Engineering, 2014, 1-13. DOI: 10.1155/2014/598531
- 32. Popescu, D., Zapciu, A., Amza, C., Baciu, F., Marinescu, R., 2018. FDM process parameters influence over the mechanical properties of polymer specimens: A review. Polymer Testing, 69, 157–166. DOI: 10.1016/j.polymertesting.2018.05.020
- 33. Safronov, V. A., Khmyrov, R. S., Kotoban, D. v., Gusarov, A. v., 2017. Distortions and Residual Stresses at Layer-by-Layer Additive Manufacturing by Fusion. Journal of Manufacturing Science and Engineering, 139(3). DOI: 10.1115/1.4034714
- 34. Samy, A. A., Golbang, A., Harkin-Jones, E., Archer, E., Tormey, D., McIlhagger, A., 2021. Finite element analysis of residual stress and warp age in a 3D printed semi-crystalline polymer: Effect of ambient temperature and nozzle speed. Journal of Manufacturing Processes, 70, 389-399. DOI: 10.1016/j.jmapro.2021.08.054
- 35. Tlegenov, Y., Hong, G. S., Lu, W. F., 2018. Nozzle condition monitoring in 3D printing. Robotics and Computer-Integrated Manufacturing, 54, 45-55. DOI: 10.1016/j.rcim.2018.05.010
- 36. Trško, L., Lago, J., Jambor, M., Nový, F., Bokůvka, O., Florková, Z., 2020. Microstructure and residual stress analysis of Strenx 700 MC welded joint. Production Engineering Archives, 26(2), 41-44. DOI: 10.30657/pea.2020.26.09
- 37. Withers, P. J., Bhadeshia, H. K. D. H., 2001. Residual stress part 1 - Measurement techniques. Materials Science and Technology, 17(4), 355-365. DOI: 10.1179/026708301101509980
- 38. Xia, H., Lu, J., Dabiri, S., Tryggvason, G., 2018. Fully resolved numerical simulations of fused deposition modeling. Part I: fluid flow. Rapid Prototyping Journal, 24(2), 463-476. DOI: 10.1108/RPJ-12-2016-0217/FULL/XML
- 39. Xiaoyong, S., Liangcheng, C., Honglin, M., Peng, G., Zhanwei, B., Cheng, L., 2017. Experimental analysis of high temperature PEEK materials on 3D printing test. Proceedings - 9th International Conference on Measuring Technology and Mechatronics Automation, ICMTMA 2017, 13-16. DOI: 10.1109/ICMTMA.2017.0012
- 40. Zhang, Y., Kevin Chou, Y., 2008. 3D FEA Simulations of Fused Deposition Modeling Process. Proceedings of the International Conference on Manufacturing Science and Engineering, 2006, 1121-1128. DOI: 10.1115/MSEC2006-21132
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-abb73f78-6a96-4a26-b730-87c8a032295e