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Abstract
Instead of the classical finite element (FE) based microstructure simulation, a Fast Fourier transform (FFT) based microstruc-
ture simulation, introduced by Moulinec and Suquet (1994, 1998), also enables the computation of highly resolved microstructural 
fields. In this context, the microscopic boundary value problem is captured by the Lippmann–Schwinger equation and solved 
by using Fast Fourier transforms (FFT) and fixed-point iterations. To decrease the computational effort of the fixed-point solv-
er, Kochmann et al. (2019) introduced a model order reduction (MOR) technique based on solving the Lippmann–Schwinger 
equation in Fourier space with a reduced set of frequencies. Thereby, the accuracy of this MOR technique depends on the 
number of used frequencies and the choice of frequencies that are considered within the simulation. Instead of the earlier pro-
posed fixed (Kochmann et al., 2019) or geometrically adapted (Gierden et al., 2021b) sampling patterns, we propose a sampling 
pattern which is updated after each load step based on the current strain. To show the precision of such a strain-based sampling 
pattern, an elasto-plastic two-phase composite microstructure is investigated.
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1. Introduction

The classical numerical two-scale simulation approach 
considering a spatially resolved microstructure is the 
FE2 method (Smit et al., 1998). Within this simulation 
approach, the FE method is used to solve the macro-
scopic as well as the microscopic boundary value prob-
lem. Replacing the FE simulation on the microscale 
by a FFT-based simulation leads to the FE-FFT-based 
method (Kochmann et al., 2016; Spahn et al., 2014). 
Under periodic boundary conditions, the FFT-based 
simulation approach has proven to be more efficient 

than the FE-based simulation (Moulinec & Suquet, 
1994; 1998). Thus, the FE-FFT-based method is a pow-
erful alternative to the classical FE2 method. Neverthe-
less, the high fidelity two-scale simulation of complex 
macroscopic boundary value problems is computation-
ally very demanding for both methods.  

To generate an efficient two-scale FE-FFT-based 
simulation approach for computing the overall ma-
terial response, the microstructure might be coarsely 
discretized. Since this coarse discretization conse-
quently only leads to inaccurate microstructural re-
sults, a subsequent post-processing step can be used 
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to generate high fidelity microstructural fields. There-
fore, the macroscopic strain/deformation gradient 
of any macroscopic point of interest is saved during 
the entire simulation and applied to a fine discretized 
microstructure in the post-processing step (Gierden 
et al., 2021a; Kochmann et al., 2018). Other recently 
developed MOR techniques deal with a more precise 
approximation of the microstructure during the entire 
FFT-based simulation. These methods are, for exam-
ple, based on a proper orthogonal decomposition (Gar-
cia-Cardona et al., 2017), low-rank approximations 
(Vondřejc et al., 2020) or a reduced set of frequencies 
(Kochmann et al., 2019).

The present paper concerns the MOR technique 
using a reduced set of frequencies. The accuracy of 
the applied MOR depends on the number and on the 
choice of considered frequencies. Therefore, Gierden 
et al. (2021b) presented a geometrically adapted sam-
pling pattern to increase the precision of the initially 
introduced fixed, radial sampling pattern (Kochmann 
et al., 2019). To generate even more precise results in 
terms of nonlinear material behavior, we introduce the 
utilization of a strain-based sampling pattern. Based on 
the microstructural strain, this sampling pattern is rede-
fined after each load step.

After briefly reviewing the FFT-based method 
in Section 2, the MOR technique based on a reduced 
set of frequencies is summed up in Section 3. There-
after, the focus of this section lies on the definition 
of the strain-based sampling pattern. Section 4 shows 
the numerical results using this sampling pattern and 
compares the results to the earlier introduced sam-
pling patterns. The paper ends with a conclusion and 
an outlook in Section 5.

2. FFT-based microstructure 
simulation 

Considering an inhomogeneous periodic microstruc-
ture Ω, the microscopic boundary value problem (BVP) 
considering small strain kinematics yields:

  div σ(x–, x) = 0			   ∀ x ∈ Ω
σ(x–, x) = σ(x–, x, ε(x–, x), α(x))� (1)
ε(x–, x) = ε–(x–) + ε~(x) 

Herein, the total microscopic strain ε(x–, x) is ad-
ditively split into a macroscopic part ε–(x–) at the mac-
roscopic position x– and a microscopically influenced 
part ε~(x) at the microscopic position x. The total stress 
σ(x–, x) depends on the resulting total strain and some 
internal variables α(x). In regard to comprehensibility, 

in the following, the dependence of all variables be-
sides the macroscopic strains on the macroscopic posi-
tion x– is not shown.

To capture an isotropic elasto-plastic materi-
al behavior, the total strain ε(xx) = εe(xx) + εp(xx) is ad-
ditively split into an elastic part εe(xx) and a plastic 
part  εp(xx). The linear-elastic stress-strain relation reads 
σ(xx)  =  C(x)  :  εe(xx) with the isotropic stiffness ten-
sor C(x). In terms of the classical von Mises yield condi-
tion with isotropic linear hardening, the yield condition 
has the form:

Φ(σ(xx), εp
acc(xx), x) = σeq(xx) – [σy

0(xx) + H(x)εp
acc(xx)]� (2)

with the initial yield stress σy
0(xx), the von Mises equiv-

alent stress σeq(xx), the hardening modulus H(x) and the 
accumulated plastic strain εp

acc(xx). The associative flow 
rule reads:

� �
�p �
�
�


�

�
(3)

with the plastic multiplier γ
.. Additionally, the 

Karush–Kuhn–Tucker conditions Φ ≤ 0, γ
. ≥ 0 and  

Φ γ. = 0 need to be fulfilled.
Using the FFT-based method to solve the inhomo-

geneous BVP in Equation (1), this BVP is transferred 
into an equivalent homogeneous representation (Hash-
in & Shtrikman, 1962) by defining a homogeneous 
reference material behavior C0 and the polarization 
stress τ(x), which represents the inhomogeneities with-
in the microstructural material behavior:

div C0:ε(x) + div τ(x) = 0		�   ∀ x ∈ Ω
	 τ(x) = σ(x, ε(x), α(x)) – C0:ε(x)� (4)
	 ε(x) = ε–(x–) + ε~(x)

Using Green’s function G0(x, xʹ) and thus the Lip-
pmann–Schwinger operator Γ0(x, xʹ) to solve the BVP 
yields the integral equation:

0( ) ( ) ( , ) : ( )dε ε Γ τ    x x x x x x
�

(5)

which is known as the Lippmann-Schwinger equation 
(Kröner, 1959; Willis, 1981). Its transfer into Fouri-
er space enables the calculation of the strain in the 
Fourier space ε̂ (ξ), which is then depending on the 
frequencies:

0ˆ ˆ( ) ( ) 0ˆ( )
0

Γ ξ τ ξ ξε ξ
ε ξ

   
  �

(6)
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In Fourier space, Green’s function
 

0ˆ ( )ikG ξ  and the 
Lippmann–Schwinger operator

 
0Γ̂ ( )ijkl ξ  read:

0 0 1ˆ ( ) ( )ik ijkl j lG Cξ    � (7)

 
0 0 0 0 0

, , , ,
1 ˆ ˆ ˆ ˆˆ ( ) ( ( ) ( ) ( ) ( ))
4ijkl jk li ik lj jl ki il kjG G G Gξ ξ ξ ξ ξ    

with the wave vector ξ gathering all the considered fre-
quencies. To solve Equation (4) Moulinec and Suquet 
(1994, 1998) proposed an iterative solution procedure 
based on fixed point iterations computing τ(x) in real 
space and solving Equation (6) in Fourier space. The 
best convergence behavior in terms of this basic fixed-
point scheme is achieved by defining the reference 
material behavior C0 as arithmetic mean of the phase-
wise material behavior. To avoid numerical resolution 
problems in this context, which are related to the Gibbs 
phenomenon (Gibbs, 1898), Willot (2015) suggested 
using a first-order finite difference approximation of the 
differential operator in Equation (7).

3. Model order reduction technique  
based on a reduced set of frequencies

To reduce the computational effort of solving the Lip-
pmann–Schwinger equation in Fourier space (Equa-
tion (6)), Kochmann et al. (2019) proposed a MOR 
technique, which only considers a reduced set of fre-
quencies. This method utilizes the fact that Green’s 
operator and the polarization stress in Equation (6) 
are given in terms of a Fourier series. The accuracy of 
this representation depends on the number of consid-
ered frequencies. While the exactness of the approxi-
mation decreases with a lower number of considered 
frequencies, also the computational effort of solving 
the Lippmann–Schwinger equation in Fourier space 
is reduced. Accordingly, a reduced set of frequencies 
should decrease this computational effort, but still lead 
to a desired quality of the solution.  

Besides the dependence on the number of used 
frequencies, the accuracy of this MOR method also de-
pends on their choice. While Kochmann et al. (2019) 
suggested a fixed, radial sampling pattern, Gierden et 
al. (2021b) proposed to use a reduced set of frequen-
cies adapted to the geometry of the microstructure. 
This new definition of sampling patterns significantly 
improves the quality of the results. Nevertheless, con-
sidering a nonlinear material behavior, the application 
of the strain-based sampling pattern Sε leads to a further 
improvement of the calculated solution. In this context, 
the strain of the previous load step defines the sampling 
pattern for the next load step, as shown in Figure 1.

Reduced  basic fixed-point scheme (Kochmann et al., 2019)

Fig. 1. Algorithm for adapting the sampling pattern Sg after 
each load step

Therefore, the norm of the strain field ε is trans-
ferred into Fourier space. To achieve a good approxima-
tion of this strain using a reduced set of frequencies, the 
frequencies with the highest amplitudes must be used. 
Similar to the geometrically adapted sampling pattern by 
Gierden et al. (2021b), the sampling pattern is thereby 
defined as consisting of a prescribed percentage of fre-
quencies with the highest amplitudes needed to capture 
the norm of the strain. To further improve the accurate-
ness of this method, the strain is first computed once, us-
ing the full set of frequencies. Figure 2 summarizes this 
algorithm to define the strain-based sampling pattern.

Fig. 2. Algorithm f S(Rε(i)(x)) to define the strain-based 
sampling pattern

As shown in Section 4, such a strain-based sam-
pling pattern leads to significantly more accurate re-
sults compared to the fixed, radial Sf and geometrically 
adapted Sg sampling patterns.

4. Results and discussion

To compare the results of the simulation with different 
sampling pattern definitions, we consider a two-phase 
microstructure with elastic inclusions embedded in an 
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elasto-plastic matrix phase. Figure 3 shows the con-
sidered microstructure, material parameters, and pre-
scribed macroscopic strain.

The prescribed strain is applied to the microstruc-
ture within 100 load steps. Figure 4 shows the resulting 
norm of the strain field and the related strain-based sam-
pling pattern for four load steps. The strain field in the 
first load step is computed using the full set of frequen-
cies. Considering the sampling patterns, the frequencies 
are rearranged on a squared grid with the lowest frequen-
cies in the center and the highest frequencies at the edg-
es. The frequencies highlighted in white correspond to 
the frequencies with the highest amplitudes in Fourier 
space needed to capture the norm of the strain field and 
are therefore taken into account within the simulation, 
while the frequencies highlighted in black are neglected. 

The material behavior within the first 20 load steps 
is elastic. This results in a linear scaling of the present 
strain field within these load steps (see Figure 4, top 
row). Due to that, the sampling pattern does not change 
from load step 1 to 20 (see Figure 4, bottom row). After 
exceeding the yield stress within the matrix phase, the 

sampling pattern changes from step to step according 
to the elasto-plastic strain. Figure 4 shows for example 
norm of the elasto-plastic strain field and the sampling 
patterns for load step 30 and 100.

The resulting stress field σxx computed with the 
strain-based sampling pattern Sg is presented and com-
pared to the reference solution, computed with the full 
set of frequencies, in Figure 5. The difference Δσxx in 
the resulting stress field is defined as follows:

Δσxx = |σxx
ref – σxx|

In addition, Figure 5 shows the results computed 
with the same number of frequencies but with the geo-
metrically adapted sampling pattern Sg. Considering 
R = 0.8% percent of frequencies, the difference in the 
stress field compared to the reference solution is signifi-
cantly smaller for the solution with the newly defined 
strain-based sampling pattern compared to the solution 
with the geometrically adapted sampling pattern. This 
improvement particularly holds in the transition zone 
from matrix material to inclusion.

material constants macroscopic strain
matrix

inclusion

Fig. 3. Two-phase microstructure with several inclusions (white) embedded in a softer  
matrix material (black), material constants and prescribed macroscopic strain

load step 1 load step 20 load step 30 load step 100

sampling pattern sampling pattern sampling pattern sampling pattern

Fig. 4. Norm of the strain field and sampling patterns with the considered frequencies  
highlighted  in white for load steps 1, 20, 30 and 100
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In addition, Figure 6 shows the relative macro-
scopic (E–) and microscopic error (E): 

ref

ref
E

σ σ

σ




 

( ) ( )1
( )

ref

ref
n

n n
E

n n

σ σ

σ


 

for the fixed, the geometrically adapted, as well as the 
strain-based sampling pattern. Here, σ– is the overall av-
eraged stress, n is the number of grid points, and the su-
perscript ref refers to the solution computed with the full 
set of frequencies. These errors are always the lowest for 
the strain-based sampling pattern. Considering a highly 
reduced set of frequencies, for example 1.5% of frequen-
cies, the microscopic error for the fixed sampling pattern 
goes up to 80% , while this error is 14% for the geo-
metrically adapted sampling pattern, but only 4% for the 
strain-based sampling pattern. Similar results are gained 
for the macroscopic error. For the fixed sampling pattern, 
the error goes up to 34%, for the geometrically adapted 
sampling pattern the error is reduced to 1.8%, but for the 
strain-based sampling pattern, the error is even reduced 
to only 0.2%. The speed-up factor for all these simula-
tions is about 5 compared to the simulation with the full 
set of frequencies and similar for all three different sam-
pling patterns, see Figure 7. Even though the sampling 

pattern is redefined after each load step for the strain-
based sampling pattern, the computational effort is not 
significantly higher since a better convergence behavior 
is observed for solving the Lippmann–Schwinger equa-
tion within one load step. 
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Fig. 6. Relative macroscopic error E and relative microscopic 
error E– for the solution with the fixed, geometrically adapted 

and strain-based sampling pattern

geometrically adapted
sampling pattern      
[Gierden et al. 2021]

strain-based
sampling pattern    

reference solution

Fig. 5. Geometrically adapted vs. strain-based sampling pattern of the last load step (a), corresponding stress fields  
and reference solution (b), differences in the stress fields compared to the reference solution (c)

a)

b)

c)
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Fig. 7. Speed-up factor for the simulation with the fixed, 
geometrically adapted and strain-based sampling pattern

5. Conclusions and outlook

We presented a new approach to defining a strain-based 
reduced set of frequencies for a reduced FFT-based mi-
crostructure simulation. Considering a nonlinear mate-
rial behavior, this approach utilizes the strain of the last 
load step to define the sampling pattern for the next load 
step. Compared to the results with the fixed and geo-
metrically adapted sampling patterns, the new approach 
leads to more accurate results without increasing the 
computational effort of the reduced fixed-point scheme.

Since the MOR technique only reduces the com-
putational costs for solving the Lippmann–Schwinger 
equation in Fourier space, there is no speed-up for the 
evaluation of the constitutive behavior. To decrease the 

related computational effort, a coupling of the MOR 
technique with a clustered microstructure (Liu et al., 
2016; Waimann et al., 2021; Wulfinghoff et al., 2018) 
is currently under investigation. In further studies, the 
basic fixed-point scheme used will additionally be 
replaced by more efficient solvers, such as a Newton 
Krylov solver (Brisard & Dormieux, 2010; Zeman et 
al., 2010), to further improve the computational per-
formance.
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