PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Control and Operation of a Hybrid Actuator for Maglev Applications

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The hybrid actuator presented in this article is meant to enable stationary and slow dynamic levitation in Maglev applications. The term 'hybrid' refers to the design of the actuator, which is a combination of permanent magnets (PM) and electromagnets. This paper presents an analytically computable control algorithm for the said hybrid actuator. The theory of magnetic circuits is summarized shortly and used to derive a cascaded control loop consisting of an inner current controller and an outer air gap controller. Since the uncontrolled hybrid actuator is inherently unstable, the system has to be stabilized. By introducing a PID-controller into the air gap control loop, the unstable behaviour of the uncontrolled system is changed into the system behaviour of a damped harmonic oscillator. The advantage of this approach is that the computed controller parameters of the PID-controller can easily be adjusted, so the system behaviour of damping and eigenfrequency can be selected within a certain range. For the execution of the control algorithm, a microcontroller (MCU) is used and for precise air gap measurement, an eddy current sensor is installed. Finally, the behaviour of the current- and air gap controller is discussed for different measurement results and the adjustable system behaviour of the damped harmonic oscillator is presented.
Wydawca
Rocznik
Strony
128--143
Opis fizyczny
Bibliogr. 15 poz., rys., tab.
Twórcy
  • RWTH Aachen University, Faculty of Electrical Engineering and Information Technology, Institute of Electrical Machines and Chair in Electromagnetic Energy Conversion, Schinkelstraße 4, 52062 Aachen, Germany
autor
  • RWTH Aachen University, Faculty of Electrical Engineering and Information Technology, Institute of Electrical Machines and Chair in Electromagnetic Energy Conversion, Schinkelstraße 4, 52062 Aachen, Germany
  • RWTH Aachen University, Faculty of Electrical Engineering and Information Technology, Institute of Electrical Machines and Chair in Electromagnetic Energy Conversion, Schinkelstraße 4, 52062 Aachen, Germany
autor
  • RWTH Aachen University, Faculty of Electrical Engineering and Information Technology, Institute of Electrical Machines and Chair in Electromagnetic Energy Conversion, Schinkelstraße 4, 52062 Aachen, Germany
Bibliografia
  • Bierhoff, M. H. and Fuchs, F. W. (2009). Active Damping for Three-Phase PWM Rectifiers with High-Order Line-Side Filters. IEEE Transactions on Industrial Electronics, 56(2), pp. 371–379. https://doi.org/10.1109/TIE.2008.2007950.
  • Bohn, G. and Steinmetz, G. (1984). The Electromagnetic Levitation and Guidance Technology of the ‘Transrapid’ Test Facility Emsland. IEEE Transactions on Magnetics, 20(5), pp. 1666–1671. https://doi.org/10.1109/TMAG.1984.1063246.
  • Cervera, A., Ezra, O., Kuperman, A. and Peretz, M. M. (2019). Modeling and Control of Magnetic Actuation Systems Based on Sensorless Displacement Information. IEEE Transactions on Industrial Electronics, 66(6), pp. 4849–4859. https://doi.org/10.1109/TIE.2018.2847652.
  • Cho, H.-W., Yu, J.-S., Jang, S.-M., Kim, C.-H., Lee, J.-M. and Han, H.-S. (2012). Equivalent Magnetic Circuit Based Levitation Force Computation of Controlled Permanent Magnet Levitation System. IEEE Transactions on Magnetics 48(11), pp. 4038–4041. https://doi.org/10.1109/TMAG.2012.2198800.
  • He, J. L., Rote, D. M. and Coffey, H. T. (1994). Study of Japanese Electrodynamic-Suspension Maglev Systems. Argonne National Lab., IL (United States). Energy Systems Division ANL/ESD-20. https://doi.org/10.2172/10150166.
  • Henzel, M. and Mazurek, P. (2011). The analysis of the control system of the active magnetic bearing. In: Z. T. Bronislaw, ed., Electrodynamic and Mechatronic Systems (SCE III). Opole, Poland, 6–8 October 2011, In: 2011 IEEE 3rd International Students Conference on Electrodynamics and Mechatronics (SCE III), Opole, Poland, 10 June 2011 – 10 August 2011, IEEE: Piscataway, NJ, pp. 53–58.
  • Kim, C.-H., Cho, H.-W., Lee, J.-M., Han, H.-S., Kim, B.-S., Kim, D.-S. (2010). Zero-power control of magnetic levitation vehicles with permanent magnets. In: 2010 International Conference on Control Automation and Systems (ICCAS 2010), Gyeonggi-do, 27 October 2010 – 30 October 2010, IEEE, pp. 732–735.
  • Kim, K.-J., Han, H.-S., Kim, C.-H. and Yang, S.-J. (2013). Dynamic Analysis of a Maglev Conveyor Using an EM-PM Hybrid Magnet. Journal of Electrical Engineering and Technology, 8(6), pp. 1571–1578.
  • Kim, Y. H., Kim, K. M. and Lee, J. (2001). Zero Power Control with Load Observer in Controlled-PM Levitation. IEEE Transactions on Magnetics, 37(4), 2851–2854. https://doi.org/10.1109/20.951326.
  • Lin, C. E. and Lin, K. G. (2000). Implementation and control of the magnetic linear actuation system. In: Proceedings of the 17th IEEE Instrumentation and Measurement Technology Conference, IMTC 2000, Baltimore, MD, USA, 1–4 May 2000, IEEE, pp. 1384–1387.
  • Papadopoulos, K. (2015). PID Controller Tuning Using the Magnitude Optimum Criterion. Cham: Springer International Publishing.
  • Rickwartz, J. P., Kolb, J. and Hameyer, K. (2020). Control, simulation and validation of a hybrid actuator for a Maglev train model on a scale of 1:20. In: 2020 21st International Conference on Research and Education in Mechatronics (REM), Cracow, Poland, 12 September 2020 – 12 November 2020, IEEE, pp. 1–6.
  • Shin, H.-J., Choi, J.-Y., Jung, K.-H., Lee, J.-M. and Kim, C.-H. (2016). Influence of Lateral-Impact Force on Electropermanent Magnet Suspension Conveyor with Inherent Guidance Force. IEEE Transactions on Magnetics, 52(7), pp. 1–4. https://doi.org/10.1109/TMAG.2016.2514298.
  • Zhang, C., Nguyen, T. D., Tseng, K. J. and Zhang, S. (2010). Stiffness analysis and levitation force control of the active magnetic bearing for a partially-self-bearing flywheel system. In: 2010 IEEE International Conference on Sustainable Energy Technologies (ICSET 2010), Kandy, Sri Lanka, 6–9 December 2010, Kandy, Sri Lanka, 12 June 2010 – 12 September 2010, Piscataway, NJ: IEEE, pp. 1–6.
  • Zhao, C., Sun, F., Jin, J., Tang, H. J. and Xu, F., Li, Q. and Oka, K. (2020). Analysis of Quasi-Zero Power Characteristic for a Permanent Magnetic Levitation System with a Variable Flux Path Control Mechanism. IEEE/ASME Transactions on Mechatronics, 1. https://doi.org/10.1109/TMECH.2020.3026086.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-abaf0e8b-de7c-49c8-af44-ef264e1e9b3a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.