PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Role of reservoirs of urban heat island effect mitigation in human settlements : moderate climate zone

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents the problem of the increasing negative impact of urban heat islands (UHI) on urban residents based on land surface temperature (LST). It is assumed that water bodies in the agglomeration remain cooler than the air and surrounding urban areas. The study aimed to determine the impact of water bodies and surrounding areas covered by trees on the temperature of an urban area and to minimise the impact of UHI on the life quality of people in the temperate climate zone at day temperatures 25°C (W day) and 29°C (H day). In the adopted research methodology, 167 reservoirs, larger than 1 ha, located within 300 m of urban areas, were analysed. Satellite thermal imagery, spatial land use data (Corine Land Cover), and local land characteristics were used. The average temperature of the reservoirs was appropriately at 4.69°C on W day and 1.9°C for H day lower than in residential areas. The average temperature of areas at a distance of 30 m from the reservoirs was 2.69°C higher on W and 0.32°C higher on H than the water of the reservoirs. The area covered by trees was 0.52°C lower on W day and 0.39°C lower on H day than the residential areas located at a distance of 300 m from the reservoir. On terrestrial areas, the lowest temperature was observed in the area covered by trees within 0-30 m from reservoirs both on warm and hot days. Based on the results of this study, UHI mitigation solutions can be suggested.
Wydawca
Rocznik
Strony
112--118
Opis fizyczny
Bibliogr. 50 poz., rys., wykr.
Twórcy
autor
  • University of Silesia in Katowice, Faculty of Natural Sciences, Jagiellońska St. 28, 40-032 Katowice, Poland
  • Central Mining Institute in Katowice, Katowice, Poland
Bibliografia
  • AVDAN U., JOVANOVSKA G. 2016. Algorithm for automated mapping of and surface temperature using Landsat 8 satellite data. Journal of Sensors. Vol. 2016 p. 2–8. DOI 10.1155/2016/1480307.
  • BOKAIE M., ZARKESH M.K., ARASTEH P.D., HOSSEINI A. 2016. Assessment of urban heat island based on the relationship between land surface temperature and land use/land cover in Tehran. Sustainable Cities and Society. Vol. 23 p. 94–104. DOI 10.1016/j.scs.2016.03.009.
  • CHAKRABORTY T., LEE X. 2021. Large differences in diffuse solar radiation among current-generation reanalysis and satellite-derived products. Journal of Climate. Vol. 34(16) p. 6635–6650. DOI 10.1175/JCLI-D-20-0979.1.
  • Copernicus 2015. Tree cover density 2015 [online]. Copernicus Europe’s eyes on Earth. [Access 26.05.2022]. Available at: https://land.copernicus.eu/pan-european/high-resolution-layers/forests/tree-cover-density/status-maps/2015
  • Copernicus 2018. Urban atlas 2018 [online]. Copernicus Europe’s eyes on Earth. [Access 26.05.2022]. Available at: https://land.copernicus.eu/local/urban-atlas/urban-atlas-2018
  • DULIAS R., HIBSZER A. 2004. Województwo śląskie – przyroda, gospodarka, dziedzictwo kulturowe [Silesian Voivodeship – nature, economy, cultural heritage]. Krzeszowice. Wydawnictwo Kubajak. ISBN 83-87971-70-7 pp. 224.
  • FOUNDA D., SANTAMOURIS M. 2017. Synergies between Urban Heat Island and Heat Waves in Athens (Greece), during an extremely hot summer (2012). Scientific Reports. Vol. 7, 10973 p. 1–11. DOI 10.1038/s41598-017-11407-6.
  • GARTLAND L. 2011. Ilhas de calor – Como mitigar zonas de calor: em areas urbanas [Heat Islands – How to mitigate heat zones: in urban areas]. São Paulo, Brazil. Oficina De Texto. ISBN 978-8586238994 pp. 248.
  • GEDZELMAN S.D., AUSTIN S., CERMAK R., STEFANO N., PARTRIDGE S., QUESENBERRY S., ROBINSON D.A. 2003. Mesoscale aspects of the urban heat island around New York City. Theoretical and Applied Climatology. Vol. 75 p. 29–42. DOI 10.1007/s00704-002-0724-2.
  • GHOSH S., DAS A. 2018. Modelling urban cooling island impact of green space and water bodies on surface urban heat island in a continuously developing urban area. Modelling Earth Systems and Environment. Vol. 4 p. 501–515. DOI 10.1007/s40808-018-0456-7.
  • GONG P., LI X., WANG J., BAI Y., CHEN B., HU T., ..., ZHOU Y. 2020. Annual maps of global artificial impervious area (GAIA) between 1985 and 2018. Remote Sensing of Environment. Vol. 236, 111510. DOI 10.1016/j.rse.2019.111510.
  • GRIMM N.B., FAETH S.H., GOLUBIEWSKI N.E., REDMAN C.L., WU J., BAI X., BRIGGS J.M. 2008. Global change and the ecology of cities. Science. Vol. 319 p. 756–760. DOI 10.1126/science.1150195.
  • GRIMMOND C.S.B., KING T.S., CROPLEY F.D., NOWAK D.J., SOUCH C. 2002. Local-scale fluxes of carbon dioxide in urban environments: Methodological challenges and results from Chicago. Environ- mental Pollution. Vol. 116. Suppl. 1 p. S243-S254. DOI 10.1016/S0269-7491(01)00256-1.
  • GRUNEWALD K., RICHTER B., MEINEL G., HEROLD H., SYRBE R.-U. 2017. Proposal of indicators regarding the provision and accessibility of green spaces for assessing the ecosystem service “recreation in the city” in Germany. International Journal of Biodiversity Science, Ecosystem Services & Management. Vol. 13(2) p. 26–39. DOI 10.1080/21513732.2017.1283361.
  • GUHATHAKURTA S., GOBER P. 2010. Residential land use, the urban heat island, and water use in Phoenix: A path analysis. Journal of Planning Education and Research. Vol. 30(1) p. 40–51. DOI 10.1177/0739456X10374187.
  • HEAVISIDE C., CAI X.-M., VARDOULAKIS S. 2015. The effects of horizontal advection on the urban heat island in Birmingham and the West Midlands, United Kingdom during a heatwave. Quarterly Journal of the Royal Meteorological Society. Vol. 141(689) p. 1429–1441. DOI 10.1002/qj.2452.
  • HEAVISIDE C., MACINTYRE H., VARDOULAKIS S. 2017. The Urban Heat Island: Implications for health in a changing environment. Current Environmental Health Reports. Vol. 4(3) p. 296–305. DOI 10.1007/s40572-017-0150-3.
  • HEINL M., HAMMERLE A., TAPPEINER U., LEITINGER G. 2015. Determinants of urban–rural land surface temperature differences – A landscape scale perspective. Landscape and Urban Planning. Vol. 134 p. 33–42. DOI 10.1016/j.landurbplan.2014.10.003.
  • HUNTER R.F., CLELAND C., CLEARY A., DROOMERS M., WHEELER B.W., SINNETT D., NIEUWENHUIJSEN M.J., BRAUBACH M. 2019. Environmental, health, wellbeing, social and equity effects of urban green space interventions: A meta-narrative evidence synthesis. Environment International. Vol. 130, 104923 p. 1–20. DOI 10.1016/j.envint.2019.104923.
  • IMHOFF M.L., ZHANG P., WOLFE R.E., BOUNOUA L. 2010. Remote sensing of the urban heat island effect across biomes in the continental USA. Remote Sensing of Environment. Vol. 114(3) p. 504–513. DOI 10.1016/j.rse.2009.10.008.
  • JABER S.M., ABU-ALLABAN M.M. 2020. MODIS-based land surface temperature for climate variability and change research: the tale of a typical semi-arid to arid environment. European Journal of Remote Sensing. Vol. 53(1) p. 81–90. DOI 10.1080/22797254.2020.1735264.
  • KENNEDY C.A., STEWART I., FACCHINI A., CERSOSIMO I., MELE R., CHEN B., ..., SAHIN A.D. 2015. Energy and material flows of megacities. Proceedings of the National Academy of Science. Vol. 112(19) p. 5985–5990. DOI 10.1073/pnas.1504315112.
  • KONDRACKI J. 2022. Geografia regionalna Polski [Regional geography of Poland]. Warszawa. Wydaw. Nauk. PWN. ISBN 9788301160227 pp. 444.
  • KOTHARKAR R., BAGADE A., RAMESH A. 2019. Assessing urban drivers of canopy layer urban heat island: A numerical modeling approach. Landscape and Urban Planning. Vol. 190, 103586. DOI 10.1016/j.landurbplan.2019.05.017.
  • LAI L.-W. 2018. The influence of urban heat island phenomenon on PM concentration: an observation study during the summer half-year in metropolitan Taipei, Taiwan. Theoretical and Applied Climatology. Vol. 131 p. 227–243. DOI 10.1007/s00704-016-1975-7.
  • LI C., YU C.W. 2013. Mitigation of urban heat development by cool island effect of green space and water body. In: Proceedings of the 8th International Symposium on Heating, Ventilation and Air Conditioning. Lecture Notes in Electrical Engineering. Eds. A. Li, Y. Zhu, Y. Li. Vol. 261. Berlin–Heidelberg. Springer p. 551–561. DOI 10.1007/978-3-642-39584-0_62.
  • LI Z.-L., TANG B.-H., WU H., REN H., YAN G., WAN Z., TRIGO I.F., SOBRINO J.A. 2013. Satellite-derived land surface temperature: Current status and perspectives. Remote Sensing of Environment. Vol. 131 p. 14–37. DOI 10.1016/j.rse.2012.12.008.
  • MOHAJERANI A., BAKARIC J., JEFFREY-BAILEY T. 2017. The urban heat island effect, its causes, and mitigation, with reference to the thermal properties of asphalt concrete. Journal of Environmental Management. Vol. 197 p. 522–538. DOI 10.1016/j.jenvman.2017.03.095.
  • OKE T.R. 1973. City size and the urban heat island. Atmospheric Environment. Vol. 7(8) p. 769–779. DOI 10.1016/0004-6981(73)90140-6.
  • PENG J., HU Y., DONG J., LIU Q., LIU Y. 2020. Quantifying spatial morphology and connectivity of urban heat islands in a mega-city: A radius approach. Science of The Total Environment. Vol. 714, 136792 p. 1–10. DOI 10.1016/j.scitotenv.2020.136792.
  • PENG J., LIU Q., XU Z., LYU D., DU Y., QIAO R. 2020. How to effectively mitigate urban heat island effect? A perspective of waterbody patch size threshold. Landscape and Urban Planning. Vol. 202, 103873. DOI 10.1016/j.landurbplan.2020.103873.
  • PHELAN P.E., KALOUSH K., MINER M., GOLDEN J., PHELAN B., SILVA III H., TAYLOR R.A. 2015. Urban heat island: mechanisms, implications, and possible remedies. Annual Review of Environment and Resources. Vol. 40 p. 285–307. DOI 10.1146/annurev-environ-102014-021155.
  • PIERZCHAŁA Ł., SIERKA E. 2020. Do submerged plants improve the water quality in mining subsidence reservoirs? Applied Ecology and Environmental Research. Vol. 18(4) p. 5661–5672. DOI 10.15666/aeer/1804_56615672.
  • QIU G.Y., ZOU Z., LI X., LI H., GUO Q., YAN C., TAN S. 2017. Experimental studies on the effects of green space and evapotranspiration on urban heat island in a subtropical megacity in China. Habitat International. Vol. 68 p. 30–42. DOI 10.1016/j.habitatint.2017.07.009.
  • RZĘTAŁA M., JAGUŚ A. 2012. New lake district in Europe: origin and hydrochemical characteristics. Water and Environment Journal. Vol. 26(1) p. 108–117. DOI 10.1111/j.1747-6593.2011.00269.x.
  • SANTAMOURIS M., HADDAD S., SALIARI M., VASILAKOPOULOU K., SYNNEFA A., PAOLINI R., ULPIANI G., GARSHASBI S., FIORITO F. 2018. On the energy impact of urban heat island in Sydney: Climate and energy potential of mitigation technologies. Energy and Buildings. Vol. 166 p.154–164. DOI 10.1016/j.enbuild.2018.02.007.
  • SHARMA A., CONRY P., FERNANDO H.J.S., HAMLET A.F., HELLMANN J.J., CHEN F. 2016. Green and cool roofs to mitigate urban heat Island effects in the Chicago metropolitan area: Evaluation with a regional climate model. Environmental Research Letters. Vol. 11 (6), 064004 p. 1–16. DOI 10.1088/1748-9326/11/6/064004.
  • SHI W., WANG M., L I J. 2020. Water property in high-altitude Qinghai Lake in China. Science of Remote Sensing. Vol. 2, 100012 p. 1–12. DOI 10.1016/j.srs.2020.100012.
  • SIERKA E., STALMACHOVÁ B., MOLENDA T., CHMURA D., PIERZCHAŁA Ł. 2012. Environmental and socio-economic importance of mining subsidence reservoirs. Praha. BEN Technicka Literatura pp. 128.
  • SRDJEVIC B., SRDJEVIC Z., LAKICEVIC M. 2019. Urban greening and provisioning of ecosystem services within hesitant decision making framework. Urban Forestry & Urban Greening. Vol. 43, 126371 p. 1–9. DOI 10.1016/j.ufug.2019.126371.
  • STONE B., HESS J.J., FRUMKIN H. 2010. Urban form and extreme heat events: are sprawling cities more vulnerable to climate change than compact cities. Environmental Health Perspectives. Vol. 118 (10) p. 1425–1428. DOI 10.1289/ehp.0901879.
  • SUN R.H., LÜ Y., YANG X., CHEN L. 2019. Understanding the variability of urban heat islands from local background climate and urbanization. Journal of Cleaner Production. Vol. 208 p. 743–752. DOI 10.1016/j.jclepro.2018.10.178.
  • UN 2018. 2018 Revision of world urbanization prospects [online]. New York City. United Nations Department of Economic and Social Affairs. [Access 11.05.2022]. Available at: https://www.un.org/development/desa/publications/2018-revision-of-world-urbanization-prospects.html
  • VAN HOVE L.W.A., JACOBS C.M.J., HEUSINKVELD B.G., ELBERS J.A., VAN DRIEL B.L., HOLTSLAG A.A.M. 2015. Temporal and spatial variability of urban heat island and thermal comfort within the Rotterdam agglomeration. Building and Environment. Vol. 83 p. 91–103. DOI 10.1016/j.buildenv.2014.08.029.
  • WU Z., REN Y. 2019. A bibliometric review of past trends and future prospects in urban heat island research from 1990 to 2017. Environmental Reviews. Vol. 27(2) p. 241–251. DOI 10.1139/er-2018-0029.
  • YU Z., YANG G., ZUO S., JØRGENSEN G., KOGA M., VEJRE H. 2020. Critical review on the cooling effect of urban blue-green space: A thres-hold-size perspective. Urban Forestry & Urban Greening. Vol. 49, 126630 p. 1–11. DOI 10.1016/j.ufug.2020.126630.
  • YANG G., YU Z., JØRGENSEN G., VEJRE H. 2020. How can urban blue-green space be planned for climate adaption in high-latitude cities? A seasonal perspective. Sustainable Cities and Society. Vol. 53, 101932. DOI 10.1016/j.scs.2019.101932.
  • ZHANG B., BRACK C.L. 2021. Urban forest responses to climate change: A case study in Canberra. Urban Forestry & Urban Greening. Vol. 57, 126910. DOI 10.1016/j.ufug.2020.126910.
  • ZHOU D., ZHAO S., ZHANG L., SUN G., LIU Y. 2015. The footprint of urban heat island effect in China. Science Reports. Vol. 5, 11160 p. 1–11. DOI 10.1038/srep11160.
  • ZHOU D.C., BONAFONI S., ZHANG L., WANG R. 2018. Remote sensing of the urban heat island effect in a highly populated urban agglomeration area in East China. Science of The Total Environment. Vol. 628–629 p. 415–429. DOI 10.1016/j.scito-tenv.2018.02.074.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-abab0bd0-4cd4-468d-9c8b-1cdfc06aa2ce
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.