Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
We study the boundary layer characteristics of heat and mass transfer flow past a vertical wedge in the presence of thermal radiation. The surface temperature and the species concentration are assumed to be oscillating in the magnitude but not in the direction of oncoming flow velocity. The governing equations have been solved by two distinct methods, namely, the straightforward finite difference method for the entire frequency range, and the series solution for the low frequency range and the asymptotic series expansion method for the high frequency range. Numerical solutions have been presented in terms of the amplitudes and phase angles of the skin friction, the rate of heat transfer and the mass transfer with the variations of Richardson’s number, the Prandtl number, the conduction–radiation parameter, the surface temperature parameter and the Schmidt number. Furthermore, the effects of these parameters are examined in terms of the transient skin friction, heat transfer and mass transfer.
Rocznik
Tom
Strony
539--565
Opis fizyczny
Bibliogr. 18 poz., tab., wykr.
Twórcy
autor
- Department of Mathematics, University of Dhaka Dhaka 1000, BANGLADESH
autor
- Department of Mathematics, University of Dhaka Dhaka 1000, BANGLADESH
autor
- Department of Mathematics, University of Dhaka Dhaka 1000, BANGLADESH
Bibliografia
- [1] Lighthill M.J. (1954): The response of laminar skin friction and heat transfer to fluctuations in the stream velocity. Proc. R. Soc., Lond. A., vol.224, pp.1–23.
- [2] Sing P.J., Roy S. and Ravindran R. (2009): Unsteady mixed convection flow over a vertical wedge. Int. J. Heat Mass Transf., vol.52, pp.415-421.
- [3] Yih K.A. (1998): Uniform suction/blowing effects on forced convection about a wedge. Acta Mech., vol.128, pp.173-181.
- [4] Watanabe T. (1990): Thermal boundary-layer over a wedge with uniform suction or injection in forced flow. Acta Mech., vol.83, pp.119-126.
- [5] Kafoussias N.G. and Nanousis N.D. (1997): Magnetohydrodynamic laminar boundary layer flow over a wedge with suction or injection. Can. J. Phys., vol.75, pp.733-745.
- [6] Anjali Devi S.P. and Kandasamy R. (2001): Effects of thermal stratification on laminar boundary layer flow over a wedge with suction or injection. Mech. Res. Commun., vol.28, pp.349-354.
- [7] Gersten K. (1965): Heat transfer in laminar boundary layers with oscillating outer flow. AGARBograph, vol.97, pp.423-475.
- [8] Kumari M. and Gorla R.S.R. (1997): Combined convection along a non-isothermal wedge in a porous medium. Heat Mass Transf., vol.32, pp.393-398.
- [9] Hossain M.A., Munir M.S., Hafiz M.Z. and Takhar H.S. (2000): Flow of a viscous incompressible fluid of temperature dependent viscosity past a permeable wedge with uniform surface heat flux. Heat Mass Transf., vol.36, pp.333-341.
- [10] Kumari M., Takhar H.S. and Nath G. (2001): Mixed convection flow over a vertical wedge embedded in a highly porous medium. Heat Mass Transf., vol.37, pp.139-146.
- [11] Kandasamy R., Muhaimin I. and Khamis A.B. (2009): Thermophoresis and variable viscosity effects on MHD mixed convective heat and mass transfer past a porous wedge in the presence of chemical reaction.Heat Mass Transf., vol.45, pp.703-712.
- [12] Uddin Z., Kumar M. and Harmand S. (2014): Influence of thermal radiation and heat generation/absorption on MHD heat transfer flow of a micropolar fluid past a wedge considering hall and ion slip currents. Thermal Sci., vol.18, No.2, pp.489-502.
- [13] Yih K.A. (2001): Radiation effect on mixed convection over an isothermal wedge in porous media, the entire regime. Heat Transf. Eng., vol.22, pp.26-32.
- [14] Al-Odat M.Q., Al-Hussien F.M.S. and Damseh R.A. (2005): Influence of radiation on mixed convection over a wedge in non-Darcy porous medium. Forsch Ing., vol.69, pp.209-215.
- [15] Chamkha A.J., Mujtaba M., Quadri A. and Issa C. (2003): Thermal radiation effects on MHD forced convection flow adjacent to a non-isothermal wedge in the presence of heat source or sink. Heat Mass Transf., vol.39, pp.305-312.
- [16] Elbashbehy E.M.A. and Dimian M.F. (2001): Effect of radiation on the flow and heat transfer over a wedge with variable viscosity. Applied Math. Comp., vol.132, pp.445-454.
- [17] Butcher J.C. (1964): Implicit Runge-Kutta method. Math. Com., vol.18, pp.50-55.
- [18] Naschtsheim P.R. and Sweigert P. (1965): Satisfaction of asymptotic boundary conditions in numerical solution of systems of non-linear equation of boundary layer type. NASA TN D-3004.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-abaaf827-0f20-4059-a941-d7969b3f898b