Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Phosphatase is an extracellular enzyme which releases inorganic phosphate (Pi) from dissolved organic phosphate and indirectly organic carbon as nutrients for aquatic communities. Here, we have examined spatiotemporal variation in total alkaline phosphatase activity (APA) over a short period off Trivandrum, SW India. Sampling was at 50 m water depth at 5, 15, 25 and 45 m for 5 consecutive days at 6 h intervals during post-monsoon season. Total APA and phosphatase producing bacteria (PPB) were estimated along with pertinent environmental parameters. APA increased with depth up to 3.98 μMPh-1 at 45 m. Increase in pigment concentration with depth is responsible for an increase in APA and Pi uptake. There is a marginal increase in APA towards 18-24 h suggesting feeding activities of secondary producers. On the whole, chlorophyll and phaeophytin were responsible for nearly 45 and 55% variation in APA (p < 0.01, p < 0.001, n = 16), respectively. Total bacterial count (TBC) was responsible for 32% (p < 0.05, n = 16) and total viable direct counts-aerobic (TVCa) for 24% (p < 0.05, n = 16) APA variation. About 38% (p < 0.01, n = 20) variation of APAwas linked to chlorophyll at noon and 22% (p < 0.001, n = 20) to PPB at dawn. Thus, it is possibile that bacteria and chlorophyll/phytoplankton could be responsible for variation in APA, with the latter contribution greater than the former at noon. Such studies would help to profile the fertility of coastal waters in terms of bioavailable Pi. Laboratory experiments are underway to help us discern the extent of light-dependent contribution of chlorophyll/phytoplankton to APA and light independent participation of bacteria to the process.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
170--177
Opis fizyczny
Bibliogr. 49 poz., tab., wykr.
Twórcy
autor
- Biological Oceanography Division, CSIR-National Institute of Oceanography, Goa, India
autor
- Biological Oceanography Division, CSIR-National Institute of Oceanography, Goa, India
autor
- Biological Oceanography Division, CSIR-National Institute of Oceanography, Goa, India
autor
- Biological Oceanography Division, CSIR-National Institute of Oceanography, Goa, India
- Biological Oceanography Division, CSIR-National Institute of Oceanography, Goa, India
Bibliografia
- [1] Ammerman, J. W., 1991. Role of ecto-phosphohydrolases in phosphorus regeneration in estuarine and coastal ecosystems. In: Chrost, R. J. (Ed.), Microbial Enzymes in Aquatic Environments. Springer-Verlag, New York, 165-186, http://dx.doi.org/10.1007/978.1.4612.3090.8.10.
- [2] Ammerman, J. W., Hood, R. R., Case, D. A., Cotner, J. B., 2003. Phosphorus deficiency in the Atlantic: an emerging paradigm in oceanography. Eos Trans. Am. Geophys. Union 84 (18), 165-170, http://dx.doi.org/10.1029.2003/EO180001.
- [3] Ayyakkannu, K., Chandramohan, D., 1970. On the occurrence and distribution of phosphobacteria in the marine environment at Porto-Novo. Curr. Sci. 39, 398-399.
- [4] Ayyakkannu, K., Chandramohan, D., 1971. Occurrence and distribution of phosphate solubilizing bacteria and phosphatase in marine sediments at Porto Novo. Mar. Biol. 11 (3), 201-205, http://dx.doi.org/10.1007/BF00401268.
- [5] Azam, F., Fenchel, T., Field, J. G., Gray, J. S., Meyer-Reil, L. A., Thingstad, F., 1983. The ecological role of water-column microbes in the sea. Mar. Ecol. Prog. Ser. 10, 257-263, http://dx.doi.org/10.3354/meps010257.
- [6] Azam, F., Smith, D. C., Long, R. A., Steward, G. F., 1995. Bacteria in oceanic carbon cycling as a molecular problem. In: Joint, I (Ed.), Molecular Ecology of Aquatic Microbes, NATO ASI Series, vol. 38. Springer-Verlag, Berlin, 39-54, http://dx.doi.org/10.1007/978.3.642.79923.5.3.
- [7] Barik, S. K., Purushothaman, C. S., Mohanty, A. N., 2001. Phosphatase activity with reference to bacteria and phosphorus in tropi cal freshwater aquaculture pond systems. Aquacult. Res. 32, 819-832, http://dx.doi.org/10.1046/j.1355-557x.2001.00619.x.
- [8] Benitez-Nelson, C. R., 2000. The biogeochemical cycling of phosphorus in marine systems. Earth Sci. Rev. 51, 109-135, http://dx.doi.org/10.1016/S0012-8252(00)00018-0.
- [9] Chrost, R. J., Overbeck, J., 1987. Kinetics of alkaline phosphatase activity and phosphorus availability for phytoplankton and bacterioplankton in lake plusee (North German Eutrophic Lake). Microb. Ecol. 13 (3), 229-248, http://dx.doi.org/10.1007/BF02025000.
- [10] Chrost, R. J., 1991. Environmental control of the synthesis and activity of aquatic microbial ectoenzymes. In: Chrost, R. J. (Ed.), Microbial Enzymes in Aquatic Environments. Springer-Verlag, New York Inc., 29-59, http://dx.doi.org/10.1007/978-1-4612-3090-8_3.
- [11] De Souza, M. J. B. D., Nair, S., Chandramohan, D., 2000. Phosphate solubilizing bacteria around the Indian Peninsula. Indian J. Mar. Sci. 29, 48-51.
- [12] Dyhrman, S. T., Ammerman, W. J., Van Mooy, B. A. S., 2006. Microbes and the marine phosphorus cycle, microbes and major elemental cycles. Oceanography 20 (2), 196-199, http://dx.doi.org/10.5670/oceanog.2007.54.
- [13] Dyhrman, S. T., Ruttenberg, K. C., 2006. Presence and regulation of alkaline phosphatase activity in eukaryotic phytoplankton from the coastal ocean: Implications for dissolved organic phosphorus remineralization. Limnol. Oceanogr. 51 (3), 1381-1390, http://dx.doi.org/10.4319/lo.2006.51.3.1381.
- [14] Fouilland, E., Tolosa, I., Bonnet, D., Bouvier, C., et al., 2014. Bacterial carbon dependence on freshly produced phytoplankton exudates under different nutrient availability and grazing pressure conditions in coastal marine waters. FEMS Microbiol. Ecol. 87 (3), 757-769, http://dx.doi.org/10.1111/1574-6941.12262.
- [15] Hino, S., 1988. Fluctuation of algal alkaline phosphatase activity and the possible mechanisms of hydrolysis of dissolved organic phosphorus in Lake Barato. Hydrobiology 157 (1), 77-84, http://dx.doi.org/10.1007/BF00008812.
- [16] Hobbie, J. E., Daley, R. J., Jasper, S., 1977. Use of nuclepore filters for counting bacteria by fluorescence microscopy. Appl. Environ. Microbiol. 33 (5), 1225-1228.
- [17] Hoppe, H. G., 2003. Phosphatase activity in the sea. Hydrobiology 493 (1/3), 187-200, http://dx.doi.org/10.1023/A:1025453918247.
- [18] Ivancić, I., Fuks, D., Radić, T., Lyons, D. M., Šilović, T., Kraus, R., Precali, R., 2009. Phytoplankton and bacteria alkaline phosphatase activity in the northern adriatic sea. Mar. Environ. Res. 69 (2), 85-94, http://dx.doi.org/10.1016/j.marenvres.2009.08.004.
- [19] Jansson, M., Olsson, H., Pettersson, K., 1988. Phosphatases; origin, characteristics and function in lakes. Hydrobiology 170 (1), 157-175, http://dx.doi.org/10.1007/BF00024903.
- [20] Kobori, H., Taga, N., 1979. Phosphatase activity and its role in the mineralization of organic phosphorus in coastal sea water. J. Exp. Mar. Biol. Ecol. 36 (1), 23-39, http://dx.doi.org/10.1016/0022-0981(79)90098-4.
- [21] Kogure, K., Simidu, U., Taga, N., 1980. Distribution of viable marine bacteria in neritic seawater around Japan. Can. J. Microbiol. 26 (3), 318-323, http://dx.doi.org/10.1139/m80.052.
- [22] Koch, M. S., Kletou, D. C., Tursi, R., 2009. Alkaline phosphatase activity of water column fractions and seagrass in a tropical carbonate estuary, Florida Bay. Estuar. Coast. Shelf Sci. 83, 403-413, http://dx.doi.org/10.1016/j.ecss.2009.04.007.
- [23] Kwon, H. K., Oh, S. J., Yang, H. S., 2011. Ecological significance of alkaline phosphatase activity and phosphatase-hydrolyzed phosphorus in the northern part of Gamak Bay, Korea. Mar. Pollut. Bull. 62 (11), 2476-2482, http://dx.doi.org/10.1016/j.marpolbul.2011.07.027.
- [24] Labry, C., Delmas, D., Herbland, A., 2005. Phytoplankton and bacterial alkaline phosphatase activities in relation to phosphate and DOP availability within the Gironde plume waters. J. Exp. Mar. Biol. Ecol. 318, 213-225, http://dx.doi.org/10.1016/j.jembe.2004.12.017.
- [25] Li, H., Veldhuis, M. J. W., Post, A. F., 1998. Alkaline phosphatase activities among planktonic communities in the northern Red Sea. Mar. Ecol. Prog. Ser. 173, 107-115.
- [26] Lignell, R., 1990. Excretion of organic carbon by phytoplankton: its relation to algal biomass, primary productivity and bacterial secondary productivity in the Baltic Sea. Mar. Ecol. Prog. Ser. 68 (1-2), 85-99, http://dx.doi.org/10.3354/meps068085.
- [27] Lin, X., Zhang, H., Huang, B., Lin, S., 2011. Alkaline phosphatase gene sequence and transcriptional regulation by phosphate limitation in Amphidinium carterae (Dinophyceae). J. Phycol. 47, 1110-1120, http://dx.doi.org/10.1111/j.1529-8817.2011.01038.x.
- [28] Lin, X., Zhang, H., Huang, B., Lin, S., 2012. Alkaline phosphatase gene sequence characteristics and transcriptional regulation by phosphate limitation in Karenia brevis (Dinophyceae). Harmful Algae 17, 14-24, http://dx.doi.org/10.1016/j.hal.2012.02.005.
- [29] Ly, S. J., Philippart, C. J. M., Kromkamp, J. C., 2014. Phosphorus limitation during a phytoplankton spring bloom in the western Dutch Wadden. Quaternary Res. 88, 109-120, http://dx.doi.org/10.1016/j.seares.2013.12.010.
- [30] Mamatha, S. S., Gobika, A., Janani, S., 2012. Phosphate solubilizing bacteria and alkaline phosphatase activity in coastal waters off Trivandrum. J. Coast. Environ. 3 (1), 89-100.
- [31] Mamatha, S. S., Malik, A., Varik, S., Paravthi, V., Jineesh, V. K., Gauns, M. U., LokaBharathi, P. A., 2015. Alkaline phosphatase activity at the southwest coast of India: a comparison of locations differently affected by upwelling. J. Sea Res. 95, 196-205, http://dx.doi.org/10.1016/j.seares.2014.06.002.
- [32] Martinez, J., Smith, D. C., Steward, G. F., Azam, F., 1996. Variability in ectohydrolytic enzyme activities of pelagic marine bacteria and its significance for substrate processing in the sea. Aquat. Microb. Ecol. 10 (3), 223-230, http://dx.doi.org/10.3354/ame010223.
- [33] Nandakumar, G., Damodaran, R., 1998. Food and feeding habits of the speckled shrimp Metapenaeus monoceros (fabricius). J. Mar. Biol. Ass. India 40 (1-2), 30-43.
- [34] Naqvi, S. W. A., Moffett, J. W., Gauns, M. U., Narvekar, P. V., Pratihary, A. K., Naik, H., Shenoy, D. M., Jayakumar, D. A., Goepfert, T. J., Patra, P. K., Al-Azri, A., Ahmed, S. I., 2010. The Arabian Sea as a high-nutrient, low-chlorophyll region during the late Southwest Monsoon. Biogeosciences 7, 2091-2100, http://dx.doi.org/10.5194/bg.7.2091.2010.
- [35] Nyadjro, E. S., Subrahmanyam, B., Murty, V. S. N., Shriver, J. F., 2012. The role of salinity on the dynamics of the Arabian Sea mini warm pool. J. Geophys. Res. 117 (C09002), 1-12, http://dx.doi.org/10.1029/2012.JC.007978.
- [36] Peetersa, F. J. C., Brummera, G. J. A., Ganssen, G., 2002. The effect of upwelling on the distribution and stable isotope composition of Globigerina bulloides and Globigerinoides ruber (planktic foraminifera) in modern surface waters of the NWArabian Sea. Global Planet. Change 34 (3), 269-291, http://dx.doi.org/10.1016/S0921-8181(02)00120-0.
- [37] Pillai, V. N., Pillai, V. K., Gopinathan, C. P., Nandakumar, A., 2000. Seasonal variations in the physico-chemical and biological characteristics of the eastern Arabian Sea. J. Mar. Biol. Ass. India 42 (1-2), 1-20.
- [38] Prell, W. L., Niitsuma, N., et al., 1991. Proceedings of the Ocean Drilling Program. Sci. Results 117, 257-267.
- [39] Qasim, S. Z., 1982. Oceanography of the northern Arabian Sea. Deep Sea Res. Pt. A 29 (9), 1041-1068, http://dx.doi.org/10.1016/0198-0149(82)90027-9.
- [40] Riemann, L., Steward, G. F., Fandino, L. B., Campbell, L., Landry, M. R., Azam, F., 1999. Bacterial community composition during two consecutive NE monsoon periods in the Arabian Sea studied by denaturing gradient gel electrophoresis (DGGE) of rRNA genes. Deep Sea Res. Pt. II 46 (8-9), 1791-1811, http://dx.doi.org/10.1016/S0967-0645(99)00044-2.
- [41] Rodina, A. G., 1972. In: Colwell, R. R., Zambruski, M. S. (Eds.), Methods in Aquatics Microbiology. Univ. Park Press, Baltimore-London-Tokyo, 461 pp.
- [42] Rooney-Varga, J. N., Giewat, M. W., Savin, M. C., Sood, S., LeGresley, M., Martin, J. L., 2004. Links between phytoplankton and bacterial community dynamics in a coastal marine environment. Mar. Ecol. 49 (1), 163-175, http://dx.doi.org/10.1007/s00248.003.1057.0.
- [43] Sebastian, M., Pitta, P., Gonzalez, J. M., Thingstad, T. F., Gasol, J. M., 2012. Bacterioplankton groups involved in the uptake of phosphate and dissolved organic phosphorus in a mesocosm experiment with P-starved Mediterranean waters. Environ. Microbiol. 14 (9), 2334-2347, http://dx.doi.org/10.1111/j.1462-2920.2012.02772.x.
- [44] Strickland, J. D. H., Parsons, T. R., 1965. A manual of sea water analysis. In: Stevenson, J. C. (Ed.), Fisheries Research Board of Canada, No. 125. second ed. Roger Duhamel FRSC, Ottawa, Canada, 37-86.
- [45] Taga, N., Kobori, H., 1978. Phosphatase activity in eutrophic Tokyo Bay. Mar. Biol. 49 (3), 2232-29, http://dx.doi.org/10.1007/BF00391134.
- [46] UNESCO, 1994. Protocols for the Joint Global Ocean Flux Study (JGOFS) Core Measurements. Manual and Guides No. 29. 97-100.
- [47] Vidal, M., Duarte, C. M., Agusti, S., Gasol, J. M., Vaque, D., 2003. Alkaline phosphatase activities in the central Atlantic Ocean indicate large areas with phosphorus deficiency. Mar. Ecol. Prog. Ser. 262, 43-53, http://dx.doi.org/10.3354/meps.262043.
- [48] Wurl, O., 2009. Boca Raton. In: Practical guidelines for the analysis of sea water. CRC Press, 143-178.
- [49] Yucel, N., 2018. Spatio-temporal variability of the size fractionated primary production and chlorophyll in the Levantine Basin (northeastern Mediterranean). Oceanologia 60 (3), 288-304, http://dx.doi.org/10.1016/0022-0981(79)90098-4.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-aba270da-b965-441b-9a6d-8b7b9c119600