PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Fixation of distal fibular fractures: A biomechanical study of plate fixation techniques

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Ankle fractures are complex injuries with variable prognoses that depend upon many factors. The aim of the treatment is to restore the ankle joint biomechanical stability with maximum range of motion. Most ankle fractures are fibular fractures, which have a typical oblique fracture line in the distal fibula located in the area of the tibiofibular syndesmosis. The aim of this study was to simulate numerically several fixation techniques of the distal fibular fractures, evaluate their stability, determine their impact on surrounding tissue load, and correlate the results to clinical treatment experience. The following three models of fibular fracture fixation were used: (a) plate fixation with three screws attached above/below and lag screws, (b) plate fixation with two screws attached above/below and lag screws, and (c) three lag screws only. All three fracture fixation models were analyzed according to their use in both healthy physiological bone and osteoporotic bone tissue. Based on the results of Finite Element Analysis for these simulations, we found that the most appropriate fixation method for Weber-B1 fibular fractures was an unlocked plate fixation using six screws and lag screws, both in patients with physiological and osteoporotic bone tissue. Conversely, the least appropriate fixation method was an unlocked plate fixation with four screws and lag screws. Although this fixation method reduces the stress on patients during surgery, it greatly increased loading on the bone and, thus, the risk of fixation failure. The final fixation model with three lag screws only was found to be appropriate only for very limited indications.
Rocznik
Strony
33--39
Opis fizyczny
Bibliogr. 22 poz., rys., tab., wykr.
Twórcy
autor
  • Department of Orthopedics and Traumatology, Third Faculty of Medicine, Charles University, Ruska 87, 10000 Prague, Czech Republic
autor
  • College of Polytechnics Jihlava, Tolsteho 16, 58601 Jihlava, Czech Republic
autor
  • Department of Mechanics, Biomechanics and Mechatronics, Faculty of Mechanical Engineering, Czech Technical University, Technicka 4, 16607 Prague, Czech Republic
autor
  • Department of Mechanics, Biomechanics and Mechatronics, Faculty of Mechanical Engineering, Czech Technical University, Technicka 4, 16607 Prague, Czech Republic
autor
  • College of Polytechnics Jihlava, Tolsteho 16, 58601 Jihlava, Czech Republic
  • Department of Anatomy, Second Faculty of Medicine, Charles University, V Uvalu 84, 15006 Prague, Czech Republic
autor
  • College of Polytechnics Jihlava, Tolsteho 16, 58601 Jihlava, Czech Republic
  • Department of Anatomy, Third Faculty of Medicine, Charles University, Ruska 87, 10000 Prague, Czech Republic
Bibliografia
  • [1] AKSAKAL B., GURGER M., SAY Y., YILMAZ E., Biomechanical Comparison of Straight DCP and Helical plates for Fixation of Transverse and Oblique Bone Fractures, Acta Bioeng. Biomech., 2014, 16, 67–74.
  • [2] AQUILINA P., CHAMOLI U., PARR W., CLAUSEN P., WROE S., Finite element analysis of three patterns of internal fixation of fractures of the mandibular condyle, Br. J Oral Maxillofac. Surg., 2013, 51, 326–331.
  • [3] ARASTU M.H., DEMCOE R., BUCKLEY R.E., Current concepts review: ankle fractures, Acta Chir. Orthop. Traumatol. Cech., 2012, 79, 473–483.
  • [4] BROWNER B., JUPITER J., KRETTEK C., ANDERSON P., Skeletal Trauma: Basic Science, Management, and Reconstruction (5 ed., Vol. 2). Elsevier Ltd., 2015.
  • [5] CARLILE G.S., GILES N.C., Surgical technique for minimally invasive fibula fracture fixation, Foot Ankle Surg., 2011, 17, 119–123.
  • [6] CRONSKÄR M., RASMUSSEN J., TINNSTEN M., Combined finite element and multibody musculoskeletal investigation of a fractured clavicle with reconstruction plate, Comput. Methods Biomech. Biomed. Engin., 2015, 18, 740–748.
  • [7] FAULKNER K., GLER C., GRAMPP S., GENANT H., Crosscalibration of liquid and solid qct calibration standards: Corrections to the ucsf normative data, Osteoporos. Int., 1993, 3, 36–42.
  • [8] HRUBINA M., HORAK Z., SKOTAK M., LETOCHA J., BACA V., DZUPA V., Assessment of complications depending on the sliding screw position – finite element method analysis, 2015, Bratisl. Lek Listy, 116, 302–310.
  • [9] JIRMAN R., HORAK Z., BOUDA T., MAZANEK J., REZNICEK J., Influence of the method of TM joint total replacement implantation on the loading of the joint on the opposite side, Comput. Methods Biomech. Biomed. Engin., 2011, 14, 673–681.
  • [10] KACHLIK D., BACA V., CEPELIK M., HAJEK P., MANDY’S V., MUSIL V., SKALA P., STINGL J., Clinical anatomy of the retrocalcaneal bursa, Surg. Radiol. Anat., 2008, 30, 347–353.
  • [11] KELLER T., Predicting the compressive mechanical behavior of bone, Journal of Biomechanics, 1994, 27, 1159–1168.
  • [12] KEYAK J., FALKINSTEIN Y., Comparison of in situ and in vitro ct scan-based femoral fracture load, Med. Eng. Phys., 2003, 25, 781–787.
  • [13] KIM T., AYTURK U.M., HASKELL A., MICLAU T., PUTTLITZ C.M., Fixation of osteoporotic distal fibula fractures: A biomechanical comparison of locking versus conventional plates, J. Foot Ankle Surg., 2007, 46, 2–6.
  • [14] MARVAN J., BELEHRADKOVA H., DZUPA V., BACA V., KRBEC M., Epidemiological, morphological and clinical aspects of ankle fractures, Acta Chir. Orthop. Traumatol. Cech., 2012, 79, 269–274.
  • [15] MCKENNA P.B., O’SHEA K., BURKE T., Less is more: lag screw only fixation of lateral malleolar fractures, Int. Orthop., 2007, 31, 497–502.
  • [16] MILNER B.F., MERCER D., FIROOZBAKHSH K., LARSEN K., DECOSTER T.A., MILLER R.A., Bicortical screw fixation of distal fibula fractures with a lateral plate: an anatomic and biomechanical study of a new technique, J. Foot Ankle Surg., 2007, 46, 341–347.
  • [17] PAKULA G., SLOWINSKI J., SCIGALA K., Biomechanics of distal femoral fracture fixed with an angular stable LISS plate, Acta Bioeng. Biomech., 2013, 15, 57–65.
  • [18] SHOCKEY J.S., VON FRAUNHOFER J.A., SELIGSON D., A measurement of the coefficient of static friction of human long bones, Surf. Technol., 1985, 25, 167–173.
  • [19] THUR C.K., EDGREN G., JANSSON K.A., WRETENBERG P., Epidemiology of adult ankle fractures in Sweden between 1987 and 2004: a population-based study of 91,410 Swedish inpatients, Acta Orthop., 2012, 83, 276–281.
  • [20] VLCEK M., LANDOR I., HORAK Z., MUSIL V., SOSNA A., JONAS D., Mathematical modelling for the comparison of plate and intramedullary osteosynthesis stability in intraarticular distal radius fractures, Bratisl. Lek Listy, 2014, 115, 107–111.
  • [21] WENDSCHE P., DRAC P., Are malleolar fractures easy to treat?, Acta Chir. Orthop. Traumatol. Cech., 2012, 79, 540–548.
  • [22] YDE J., The Lauge Hansen classification of malleolar fractures, Acta Orthop. Scand., 1980, 51, 181–192.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ab9d4bef-ba1c-4391-840e-fcef6abb0ac9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.