PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Reduction of Thermal Conductivity through the Dispersion of TiC Nanoparticles into a p-Type Bi0.5Sb1.5Te3 Alloy by Ball Milling and Spark Plasma Sintering

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The dispersion of nanoparticles in the host matrix is a novel approach to enhance the thermoelectric performance. In this work, we incorporate the TiC (x = 0, 1 and 2 wt.%) nanoparticles into a p-type Bi0.5Sb1.5Te3 matrix, and their effects on microstructure and thermoelectric properties were systematically investigated. The existence of TiC contents in a base matrix was confirmed by energy dispersive X-ray spectroscopy analysis. The grain size decreases with increasing the addition of TiC content due to grain boundary hardening where the dispersed nanoparticles acted as pinning points in the entire matrix. The electrical conductivity significantly decreased and the Seebeck coefficient was slightly enhanced, which attributes to the decrease in carrier concentration by the addition of TiC content. Meanwhile, the lowest thermal conductivity of 0.97 W/mK for the 2 wt.% TiC nanocomposite sample, which is ~16% lower than 0 wt.% TiC sample. The maximum figure of merit of 0.90 was obtained at 350 K for the 0 wt.% TiC sample due to high electrical conductivity. Moreover, the Vickers hardness was improved with increase the addition of TiC contents.
Twórcy
  • Kongju National University, Division of Advanced Materials Engineering, Cheonan-si 31080, Republic of Korea
  • Kongju National University, Division of Advanced Materials Engineering, Cheonan-si 31080, Republic of Korea
  • Kongju National University, Division of Advanced Materials Engineering, Cheonan-si 31080, Republic of Korea
autor
  • Kongju National University, Division of Advanced Materials Engineering, Cheonan-si 31080, Republic of Korea
  • Kongju National University, Division of Advanced Materials Engineering, Cheonan-si 31080, Republic of Korea
Bibliografia
  • [1] G. J. Snyder, E. S. Toberer, Nat. Mater. 7, 105-114 (2008).
  • [2] H. S. Kim, P. Dharmaiah, B. Madavali, R. Ott , K. H. Lee, S. J. Hong, Acta. Mat. 128, 43-53 (2017).
  • [3] S. M. Yoon, C. Nagarjuna, D. W. Shin, C. H. Lee, M. Babu, S. J. Hong, K. H. Lee, J. Korean Powder Metall. Inst. 24, 357-363 (2017).
  • [4] B. Madavali, H. S. Kim, K. H. Lee, Y. Isoda, F. Gascoin, S. J. Hong, Mater Des. 112, 485-494 (2016).
  • [5] W. H. Shin, K. Ahn, M. Jeong, J. S. Yoon, J. M. Song, S. Lee, W. S. Seo, Y. S. Lim, J. Alloy. Compd. 718, 342-348 (2017).
  • [6] Y. Lan, A. J. Minich, G. Chen, Z. F. Ren, Adv Funct Mater. 20, 357 (2010).
  • [7] A. J. Minnich, M. S. Dresselhaus, Z. F. Ren, G. Chen, Energy Environ. Sci. 2, 466-479 (2009).
  • [8] C. J. Vineis, A. Shakouri, A. Majumdar, M. G. Kanatzidis, Adv. Mater. 22, 3980 (2010).
  • [9] W. Xie, J. He, H. J. Kang, X. Tang, S. Zhu, M. Laver, S. Wang, J.R.D. Copley, C. M. Brown, Q. Zhang, T. M. Tritt, Nano Lett. 10, 3283-3289 (2010).
  • [10] S. Grasso, N. Tsujii, Q. Jiang, J. Khaliq, S. Maruyama, M. Miranda, K. Simpson, T. Mori, M. J. Reece, J. Mater. Chem. C, 1, 2362-2367 (2013).
  • [11] G. B. Granger, A. Addad, C. Navone, M. Soulier, J. Simon, P. D. Szkutnik, Acta Mater. 60, 4523-4530 (2012).
  • [12] B. Liu, J. Hu, J. Zhou, R. Yang, Materials. 10, 418 (2017).
  • [13] S. V. Faleev, F. Leonard, Phys. Rev. B. 77 (21), 214304 (2008).
  • [14] Y. Q. Cao, X. B. Zhao, T. J. Zhu, X. B. Zhang, J. P. Tu, Appl. Phys. Lett. 92, 143106 (2008).
  • [15] K. T. Kim, G. H. Ha, J. Nano Mat. doi.org/10.1155/2013/821657 (2013).
  • [16] B. Madavali, H. S. Kim, K. H. Lee, S. J. Hong, Intermetallics. 82, 68-75 (2017).
  • [17] B. Madavali, H. S. Kim, K. H. Lee, S. J. Hong, J. Appl. Phys. 121, 225104 (2017).
  • [18] B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, D. Vashaee, X. Chen, J. Liu, M. S. Dresselhaus, G. Chen, Z. Ren, Science. 320, 634-638 (2008).
  • [19] J. H. Bahk, A. Shakouri, Phys. Rev. B. 93, 165209 (2016).
  • [20] H. S. Kim, Z. M. Gibbs, Y. Tang, H. Wang, G. J. Snyder, APL Mater. 3, 041506 (2015).
  • [21] E. B. Kim, P. Dharmaiah, D. Shin, K. H. Lee, S. J. Hong, J. Alloy. Compd. 703, 614-623 (2017).
  • [22] B. Madavali, C. H. Lee, H. S. Kim, K. H. Lee, S. J. Hong, Int. J. Appl. Ceram. Technol. 15, 125-131 (2018).
Uwagi
EN
1. This work was supported by the Industrial Strategic Technology Development Program-Development of high efficient thermoelectric module with figure of merit (Z) 3.4 (X10-3) by using 1.0 kg/batch scale productible polycrystalline thermoelectric material with average figure of merit (ZT) 1.4 and over (10063286) funded By the Ministry of Trade, Industry & Energy (MOTIE, Korea).
PL
2. Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ab9ab66e-44c9-4425-a3ae-f5a2753fbeb1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.