PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analysis of Noise in Education Buildings

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Main parameters of indoor environmental in terms of noise could influence people health, fettle and ability to work. Therefore proper noise level is strongly important. The research was conducted in a didactic buildings – University of Technology located in Białystok, north-eastern Poland and education buildings the Warsaw University of Life Sciences, Faculty Civil Engineering and Environmental Engineering located in center Poland. Research was devoted to issues related to the noise level in a classrooms of university during the didactic classes. In all rooms of both universities, during working days average noise level was under 40 dB. These values are in accordance with standards. Outside the buildings, the sound level was in the range of 30–35 dB. These values also comply with the guidelines.
Rocznik
Strony
176--181
Opis fizyczny
Bibliogr. 33 poz., rys., tab.
Twórcy
  • Department of Agricultural and Food Engineering and Environmental Management, Faculty of Civil Engineering and Environmental Sciences, Bialystok University of Technology, ul. Wiejska 45E, 15-351 Białystok, Poland
  • Institute of Environmental Engineering, Warsaw University of Life Sciences (SGGW), ul. Nowoursynowska 166, 02-776 Warsaw, Poland
Bibliografia
  • 1. Akther T., Ahmed M., Shohel M., Ferdousi F.K., Salam A. 2019. Particulate matters and gaseous pollutants in indoor environment and Association of ultra-fine particulate matters (PM1) with lung function. Environmental Science and Pollution Research, 26(6), 5475–5484. https://doi.org/10.1007/s11356-018-4043-2.
  • 2. Alam P., Ahmad K., Afsar S.S., Akhtar N. 2020. Noise Monitoring, Mapping, and Modelling Studies – A Review, Journal of Ecological Engineering 21(4), 82–93. 10.12911/22998993/119804.
  • 3. AlGaithi S., Kim Y.K. 2021. Analysis of Indoor Environment Quality (IEQ) in UAE University Campus Building, UAE, ZEMCH International Conference 2021, 271-284.
  • 4. Ayr U., Cirillo E., Martellotta F. 2001. An experimental study on noise indices in air-conditioned offices. Applied Acoustics, 62(6), 633–643. https://doi.org/10.1016/S0003-682X(00)00072-4.
  • 5. Ayr U., Cirillo E., Martellotta F. 2002. Further investigations of a new parameter to assess noise annoyance in air-conditioned buildings. Energy and Buildings, 34, 765–774. https://doi.org/10.1016/S0378-7788(02)00095-6.
  • 6. Balasbaneh A.T., Yeoh D., Abidin A.R.Z. 2020. Life cycle sustainability assessment of window renovations in schools against noise pollution in tropical climates. Journal of Building Engineering, 32, 101784. https://doi.org/10.1016/j.jobe.2020.101784.
  • 7. Bogdan A., Chludzinska M. 2010. Assessment of Thermal Comfort Using Personalized Ventilation. HVAC&R Research, 16, 529-542. https://doi.org/10.1080/10789669.2010.10390919.
  • 8. Caviola S., Visentin C., Borella E., Mammarella I., Prodi N. 2021. Out of the noise: Effects of sound environment on maths performance in middleschool students. Journal of Environmental Psychology, 73, 101552. https://doi.org/10.1016/j.jenvp.2021.101552.
  • 9. Collins T.W., Grineski S.E., Nadybal S. 2019. Social disparities in exposure to noise at public schools in the contiguous United States. Environmental Research, 175, 257-265. https://doi.org/10.1016/j.envres.2019.05.024.
  • 10. Colman Lerner J.E., de los Angeles Gutierrez M., Mellado D., Giuliani D., Massolo L., Sanchez E.Y., Porta A. 2018. Characterization and cancer risk assessment of VOCs in home and school environments in gran La Plata, Argentina. Environmental Science and Pollution Research, 25(10), 10039–10048. https://doi.org/10.1007/s11356-018-1265-2.
  • 11. Ebenezer S.P., Pramanck A.K., Ramachandran K.P., Krishnan P.K. 2022. Study of Noise Annoyance and Vibration of Constructal Designed Window Air Conditioner. Trends in Sciences, 19(5), 2693. https://doi.org/10.48048/tis.2022.2693.
  • 12. Fantozzi F., Lamberti G., Leccese F., Salvadori G., Fantozzi F., Lamberti G., Leccese F., Salvadori G. 2022. Monitoring CO2 concentration to control the infection probability due to airborne transmission in naturally ventilated university classrooms, Architectural Science Review, 65(4), 306-318. https://doi.org/10.1080/00038628.2022.2080637.
  • 13. Gładyszewska-Fiedoruk K. 2019. Survey Research of Selected Issues the Sick Building Syndrome (SBS) in an Office Building. Environmental and Climate Technologies, 23(2), 1–8. https://doi.org/10.2478/rtuect-2019-0050.
  • 14. Gomez-Carmona O., Navarro J., Casado-Mansilla D., Lopez-De-Ipina D., Sole-Beteta X., Zaballos A. 2022. Addressing Objective and Subjective Indicators of Comfort in Educational Environments. 7th International Conference on Smart and Sustainable Technologies, SpliTech 2022. https://doi.org/10.23919/SpliTech55088.2022.9854272.
  • 15. Jachimowicz S., Gładyszewska-Fiedoruk K. 2017. The Noise Produced by the Air Handling Units Depending on the Type of Engine. https://doi.org/10.3846/enviro.2017.020.
  • 16. Jeon J.Y., You J., Jeong C.I., Kim S.Y., Jho M.J. 2011. Varying the spectral envelope of air-conditioning sounds to enhance indoor acoustic comfort. Building and Environment, 46(3), 739–746. https://doi.org/10.1016/j.buildenv.2010.10.005.
  • 17. Kong D., Liu H., Wu Y., Li B., Wei S., Yuan M. 2019. Effects of indoor humidity on building occupants’ thermal comfort and evidence in terms of climate adaptation. Building and Environment, 155, 298-307. https://doi.org/10.1016/j.buildenv.2019.02.039.
  • 18. Li P., Parkinson T., Brager G., Schiavon S., Cheung T.C.T., Froese T. 2019. A data-driven approach to defining acceptable temperature ranges in buildings. Building and Environment, 153, 302-312. https://doi.org/10.1016/j.buildenv.2019.02.020.
  • 19. Lisik K., Cichowicz R. 2022. Microbiological Risk in Rooms with Mechanical Ventilation, Journal of Ecological Engineering, 23(10), 164-171. https://doi.org/10.12911/22998993/152541.
  • 20. PN-87/B-02151/02 Building acoustics. Noise protection facilities by weight of buildings. Allowable values sound level indoors (In Polish).
  • 21. PN-B-02151-4:2015-06 Building acoustics. Protection against noise in buildings. Part 4: Requirements concerning the conditions of reverberation and speech intelligibility in spaces and research guidelines (In Polish).
  • 22. Podawca K., Karpiński A. 2021. Analysis of spatial development possibilities of properties endangered by road noise in the context of permissible LN and LDWN indicators. Journal of Ecological Engineering, 22(5), 238–248. https://doi.org/10.12911/22998993/135859.
  • 23. Recknagel H., Sprenger E., Honmann W., Schramek E.R. 2008. Taschenbuch fur Heizung und Klimatechnik. 3rd edition Munchen: Ernst-Rudolf Schramek.
  • 24. Regulation of the Minister of the Environment of 14 June 2007 on permissible noise levels in the environment (Dz.U. 2007 nr 120 poz. 826) (In Polish).
  • 25. Rodriguez Vidal I., Oregi X., Otaegi J. 2020. Thermal comfort evaluation of offices integrated into an industrial building. Case study of the Basque country, Environmental and Climate Technologies, 24(2), 20-31. https://doi.org/10.2478/rtuect-2020-0051.
  • 26. Roussel C., Böhm K., Neis P. 2022. Sensor Fusion for Occupancy Estimation: A Study Using Multiple Lecture Rooms in a Complex Building, Machine Learning and Knowledge Extraction, 4(3), 803-813. https://doi.org/10.3390/make4030039.
  • 27. Teleszewski T., Gajewski A. 2020a. Measurement approach of interfacial tension on example of water-toluene, International Communications in Heat and Mass Transfer, 118, 104817. https://doi.org/10.1016/j.icheatmasstransfer.2020.104817.
  • 28. Teleszewski T., Gajewski A. 2020b. The Latest Method for Surface Tension Determination: Experimental Validation, Energies, 13, 3629, 10.3390/en13143629.
  • 29. Tureková I., Marková I., Sventeková E., Harangózo J. 2022. Evaluation of microclimatic conditions during the teaching process in selected school premises. Slovak case study. Energy, 239, 122161. https://doi.org/10.1016/j.energy.2021.122161.
  • 30. (web1) https://pb.edu.pl/uczelnia/materialy-promocyjne/.
  • 31. (web2) https://www.sggw.edu.pl/strona-glowna/nauka/biuro-obslugi-nauki/.
  • 32. Zhang H., Yang X., Tu R., Huang J., Li Y. 2022. Thermal Comfort Modeling of Office Buildings Based on Improved Random Forest Algorithm, Proceedings of 2022 IEEE 11th Data Driven Control and Learning Systems Conference, DDCLS, 1369-1376. https://doi.org/10.1109/DDCLS55054.2022.9858536.
  • 33. Zhang L., Ma H. 2022. The effects of environmental noise on children’s cognitive performance and annoyance. Applied Acoustics, 198, 108995. https://doi.org/10.1016/j.apacoust.2022.108995.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ab9967d3-5fe7-4c32-a671-6ab84bc8bd5f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.