PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Moisture dependent: physical properties of baobab seeds (Adansonia digitata L.)

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Właściwości fizyczne nasion baobabu (Adansonia digitata L.) w zależności od ich wilgotności
Języki publikacji
EN
Abstrakty
EN
The research investigated physical properties of baobab seeds to determine suitable equipment for the processing of its seeds. Pods of baobab used in the study were collected at a local farm in Ilorin, North Central Nigeria. Physical properties of the samples, such as moisture contents, mass, axial dimensions, shape indices, true and bulk densities, porosity, angle of repose and surface area were determined. The results showed that physical properties of baobab seeds were stable for moisture content, ranging between 12 to 18% dry mass (dm). The 100 seed mass (g) and geometric mean diameter increased from 0.60 g to 0.62 g and 10.12 to 10.27 mm respectively, in the moisture range of 12 to 18% dm. Other studied ranges of physical properties ranges included: average length (12.22 to 12.63 mm), width (10.10 to 10.28 mm), thickness (8.23 to 8.42 mm,), sphericity, (81.23 to 82.56 mm), surface area (319.42 to 332.53 mm2 ), 50 seed mass (0.60 and 0.62 g), and 1000 seed mass (12 and 12.4 g) within the moisture content range of 12 to 18% dm. The angle of repose of baobab seeds decreased with an increase in moisture content. The maximum value of 29.18o was obtained at 14% moisture content while a minimum value of 24.42o was obtained at 18% moisture. Moisture content had a significant effect on coefficient of friction of baobab seeds on glass, stainless steel, plywood and rubber. In the same moisture range (12-18%), the static coefficient of friction for baobab seeds ranged from 0-739 to 0-905 on stainless steel, 0-960 to 1-190 on galvanized steel, 0-812 to 1-055 on plywood and 0- 496 to 0-950 on glass. The least coefficient of friction values were recorded on stainless steel and glass which implies that baobab seeds will move with lower resistance on these surfaces in post-harvest handling. On the other hand, the resistance will be higher on plywood and glass. The data obtained will serve as guide for agricultural and food engineers, food processors and technicians involved in design and construction of post-harvest equipment used for separating, cleaning, milling and other production processes, to which baobab seeds are subjected.
PL
W pracy zbadano właściwości fizyczne nasion baobabu w celu określenia parametrów urządzeń do ich przetwarzania. Strąki baobabu zostały zebrane w gospodarstwie w miejscowości Ilorin w północno-środkowej Nigerii. Właściwości fizyczne określone w pracy to zawartość wilgoci, masa, wymiary osiowe, wskaźniki kształtu, gęstość rzeczywistą i objętościową, porowatość, kąt usypu i powierzchnię. Wyniki wykazały, że właściwości fizyczne nasion baobabu są stabilne dla wilgotności pomiędzy 12 a 18% suchej masy (sm). W zakresie wilgotności od 12 do 18% sm stwierdzono wzrost masy 100 nasion (g) i średniej geometrycznej średnicy odpowiednio z 0,60 g do 0,62 g i 10,12 do 10,27 mm. Pozostałe zbadane zakresy właściwości fizycznych to: średnia długość (12,22 do 12,63 mm), szerokość (10,10 do 10,28 mm), grubość (8,23 do 8,42 mm), kulistość (81,23 do 82,56 mm), pole powierzchni (319,42 do 332,53 mm2 ), masa 50 nasion (0,60 i 0,62 g) oraz masa 1000 nasion (12 i 12,4 g) w zakresie wilgotności od 12 do 18% sm. Kąt usypu zmniejszał się wraz ze wzrostem wilgotności, maksymalną wartość 29,18o uzyskano przy wilgotności 14%, natomiast minimalną 24,42o przy 18% sm. Wilgotność miała istotny wpływ na współczynnik tarcia nasion baobabu na szkle, stali nierdzewnej, sklejce i gumie. W tym samym zakresie wilgotności 12-18% współczynnik tarcia statycznego dla nasion baobabu wynosił od 0-739 do 0-905 na stali nierdzewnej, 0-960 do 1-190 na stali ocynkowanej, 0-812 do 1-055 na sklejce i 0-496 do 0-950 na szkle. Najmniejsze wartości współczynnika tarcia odnotowano na stali nierdzewnej i szkle. Sugeruje to, że nasiona baobabu będą się przesuwać z mniejszym oporem na powierzchniach z tych materiałów, jeżeli wykorzysta się je do produkcji urządzeń przetwórczych, podczas większy opór wystąpi na sklejce i szkle. Uzyskane dane mogą posłużyć technologom rolnictwa i żywności, zakładom przetwórstwa żywności i konstruktorom maszyn do przetwórstwa baobabu, np. urządzeń do sortowania, czyszczenia, mielenia itp.
Rocznik
Strony
33--46
Opis fizyczny
Bibliogr. 46 poz., rys., tab.
Twórcy
  • Department of Agricultural Engineering, Faculty of Engineering, Osun State University, Osogbo, Nigeria
  • Department of Agricultural Engineering, Faculty of Engineering, Osun State University, Osogbo, Nigeria
  • Department of Agricultural Engineering, Faculty of Engineering, Osun State University, Osogbo, Nigeria
  • Department of Agronomy, College of Agriculture, Osun State University, Osogbo, Nigeria
  • Department of Agronomy, College of Agriculture, Osun State University, Osogbo, Nigeria
  • Department of Agronomy, College of Agriculture, Osun State University, Osogbo, Nigeria
  • Department of Food and Agricultural Engineering, Faculty of Engineering and Technology, Kwara State University, Malete, Ilorin, Nigeria
Bibliografia
  • Abdus-Salam, N., Adekola, S. (2018). Adsorption studies of zinc (II) on magnetite, baobab (Adansonia digitata) and magnetite-baobab composite. Applied Water Science, 8(8), 1-11.
  • Acham, I., Eke, M., Edah J. (2020). Physicochemical, microbiological and sensory quality of juice mix produced from watermelon fruit pulp and baobab fruit pulp powder. Croatian journal of food science and technology, 1(12), 48-55.
  • Addi, A.S.P., Bashira, A.M., Baraka K. (2018). Physical and Mechanical Properties of Selected Common Beans (Phaseolus vulgaris L.) Cultivated in Tanzania. Journal of Engineering, 2018, 8134975.
  • Ajav, E.A., Ogunlade, C.A. (2014). Physical Properties of Ginger (Zingiber officinale). Global Journal of Science Frontier Research, 14(8), 1-9.
  • Alonge, A.F., Udofot, E.J. (2012). Some Physical Properties of African Nutmeg (Monodara myristica) Seed Relevant to its Processing. In 2012 Dallas, Texas, July 29-August 1, 2012 (p. 1). American Society of Agricultural and Biological Engineers.
  • Anoh, K., (2021). Effect of baobab fruit pulp meal on testosterone concentration and gonadal and epididymal morphometry of rabbit bucks in a hot environment. Nigerian Journal of Animal Production, 3(44), 98-103.
  • Aremu, D.O., Babajide., N.A., Ogunlade C.A. (2014). Comparison of Some Engineering Properties of Common Cereal Grains In Nigeria. International Journal of Engineering Science Invention, 3(4), 10-14.
  • Aremu, D.O., Ogunlowo, Q.O., Babajide, N.A., Ogunlade, C.A., Makinde, O.O. (2016). Selected Engineering Properties of Fluted Pumpkin (Telfaria occidentalis) Seeds. Journal of Multidiscpilinary Engineering Science and Technology, 3(4), 4594-4598.
  • Arslan, S., Vursavus, K. (2008). Physico-Mechanical Properties of Almond Nut and Its Kernel as a Function of Variety and Moisture Content. Philippine Agricultural Scientist, 91(2), 171-179.
  • Asoiro, F.U., Ani, A.O. (2011). Determination of some physical properties of African Yam beans. The Pacific Journal of Science and Technology, 12(1), 374-380.
  • Bagherpour, H., Minaei, S., Khoshtaghaza, M.H., (2010). Selected physico-mechanical properties of lentil seed. International Agrophysics, 24, 81-84.
  • Bande, Y.M., Adam, N.M., Azmi, Y., & Jamarei, O. (2012). Determination of Selected Physical Properties of Egusi Melon (Citrullus colocynthis lanatus) Seeds. Journal of Basic & Applied Sciences, 8, 257-265.
  • Barakat, H. (2021). Nutritional and Rheological Characteristics of Composite Flour Substituted with Baobab (Adansonia digitata L.) Pulp Flour for Cake Manufacturing and Organoleptic Properties of Their Prepared Cakes. Foods. 4(10):716.
  • Baryeh, E.A. (2002). Physical properties of millet. Journal of Food Engineering, 51, 39-46.
  • Burubai, W., Akor, A.J., Igoni, A.H., Puyate, Y.T. (2007). Some physical properties of African nutmeg (Monodora myristica). International Agrophysics, 21, 123-126.
  • Chaudhary, D.A. (2015). Engineering properties of Biological materials. Retrieved August 20, 2022, https://www.academia.edu/3879560/Engineering_properties_of_biological_Materials
  • Coskuner, Y., Karababa, E. (2007). Physical properties of coriander seeds (Coriandrum sativum L.). Journal of Food Engineering, 80(2), 408-416.
  • Darvishi, H. (2012). Moisture-Dependent Physical and Mechanical Properties of White Sesame Seed. American-Eurasian Journal of Agricultural and Environmental Sciences, 12(2), 198-203.
  • Debelo, H., Ndiaye, C., Kruger, J., Hamaker, B., Ferruzzi, M. (2019). African Adansonia digitata fruit pulp (baobab) modifies provitamin A carotenoid bioaccessibility from composite pearl millet porridges. Journal of Food Science and Technology. 4(57), 1382-1392.
  • Deconinck, W. (2020). The science of the very small has enormous potential. Retrieved August 20, 2022, from https://futurumcareers.com/Wouter_Deconinck-The-science-of-the-very-small-hasenormous-potential.pdf.
  • Dursun, E., Dursun, I. (2005). Some physical properties of caper seed. Biosystems Engineering, 92(2), 237-245.
  • Erwa, I., Shinger, M., Ishag, O. (2018). Background Correction Method for Determination of Ascorbic Acid in Baobab Fruit Pulp Using Direct UV Spectrophotometry. Chemical Science International Journal. 2(23), 1-6.
  • Fadeyibi, A., Lamidi, W.A., Ademola, S.M. (2021). Engineering and proximate properties of miracle berry fruit (Synsepalum dulcificum L.) essential for its processing equipment design. Agricultural Engineering International: CIGR Journal, 23(4), 227-235.
  • Gharibzahedi, S.M.T., Etemad, V., Mirarab-Razi, J., Fos’hat, M. (2010). Study on some engineering attributes of pinenut (Pinus pinea) to the design of processing equipment. Research in Agricultural Engineering, 56(3), 99-106.
  • Hussain, Z., Yagi, S., Mahomoodally, M., Mohammed, I., Zengin, G. (2019). A comparative study of different solvents and extraction techniques on the anti-oxidant and enzyme inhibitory activities of Adansonia digitata L. (Baobab) fruit pulp. South African Journal of Botany. 126, 207-213.
  • Idowu, D.O., Abegunrin, T.P., Ola, F.A., Adediran, A.A., Olaniran, J.A. (2012). Measurement of some engineering properties of sandbox seeds (Hura crepitans). Agriculture and Biology Journal of North America, 3, 318-325.
  • Irtwange, S.V., Igbeka, J.C. (2002). Some physical properties of two African yam bean (Sphenostylis stenocarpa) accessions and their interrelations with moisture content. Applied Engineering in Agriculture,18(5), 567-576.
  • Iswariya, V., Devi, A.G.S. (2021). Assessment of Potential Property of Baobab Fruit Pulp Derived Pectin as a Pharmaceutical Excipient. International Journal of Pharmaceutical Sciences Review and Research, 1(67), 91-96.
  • Jaiyeoba, K.F., Ogunlade, C.A., Kwanaki, O.S., Fadele, O.K. (2020). Moisture Dependent Physical Properties of Nutmeg (Myristica fragrans) Relevant for Design of Processing Machines. Current Journal of Applied Science and Technology, 39(12), 74-85.
  • Karungamye, P., Murthy, H. (2017). Corrosion Inhibitive and Adsorption Behaviour of Methanolic Extracts of Adansonia digitata (Baobab) Fruit Pulp and Seeds for Mild Steel in 1.0 M H2SO4. IOSR Journal of Applied Chemistry, 7(10), 64-74.
  • Gui-feng, L., Run-guo, Z., Hua, L., Zhi-qiang, B., Zhong-jun, G., Yi, D. (2012). Geographic variation of seed morphological traits of Picea schrenkiana var. tianschanica in Tianshan Mountains, Xinjiang of Northwest China. Yingyong Shengtai Xuebao, 23(6), 1455-1461.
  • Milani, E., Razavi, S.M.A., Koocheki, A., Nikzadeh, V., VahediN., MoeinFard, M., GholamhosseinPour, A. (2007). Moisture dependent physical properties of cucurbit seeds. International Agrophysics, 21, 157-168.
  • Mohsenin, N.N. (1986). Engineering Properties of Plants and Animal Materials. Gordon and Breach Science publishers, New York, London. 2nd Edition.
  • Mosseler, A., Major, J.E., Simpson, J.D., Daigle, B., Lange, K., Park, Y.-S., Johnsen, K.H., Rajora, O.P. (2000). Indicators of population viability in red spruce, Picea rubens. I. Reproductive traits and fecundity. Canadian Journal of Botany, 78, 928-940.
  • Ndjientcheu, L. Y., Ouiminga, S., Sidibe, S., Ouedraogo, I. (2020). Synthesis of a cleaner potassium hydroxide-activated carbon from baobab seeds hulls and investigation of adsorption mechanisms for diuron. Scientific African, 9, e00476.
  • Ogunlade, C.A., Aremu, A.K. (2019). Influence of Processing Conditions on Yield and Quality of Mechanically Expressed African Oil Bean (Pentaclethra macrophylla Benth) Kernels: A Response Surface Approach. Journal of Food Process Engineering, 42(2), 1-9.
  • Ogunlade, C.A., Alaka, A.C., Babajide, N.A., Aremu, D.O., Anjorin, S.E., Akinyele, O.A. (2016). Moisture-dependent physical properties of popcorn. Journal of Multidisciplinary Engineering Science and Technology, 3(2), 4069-4073.
  • Ohaeri, O.H., Ohaeri, E.G. (2015). Some physical and frictional properties of Dikanut (Irvingia wombolu) as a function of moisture content. British Journal of Earth Sciences Research 3(1), 16-29.
  • Olalusi, A.P., Bolaji, O.T. (2010). Some engineering properties of indigenous grown jatropha seeds (“Lapalapa”). Electronic Journal of Environmental, Agricultural and Food Chemistry, 9, 1760-1771.
  • Ozturk, M., Kara, Elkoca E., Ercisli S. (2008). Physico-chemical grain properties of new common bean cv. ’Elkoca-05’. Scientifc Research and Essays, 4(2), 88-93.
  • Perissinotto, R., Šípek, P. (2019). New species of Xiphoscelis Burmeister, 1842 (Coleoptera, Scarabaeidae, Cetoniinae) from arid regions of South Africa and Namibia. ZooKeys, 879, 57-89.
  • Pliestic, S., Dobricevic, N., Filipovic, D., Gospodaric, Z. (2006). Physical Properties of Filbert Nut and Kernel. Biosystems Engineering, 93(2), 173-178.
  • Rawat, B.S., Uniyal, A.K. (2011). Variability in cone and seed characteristics and seed testing in various provenances of Himalayan spruce (Picea smithiana). Journal of Forestry Research, 22, 603-610.
  • Sacilik, K., Ozturk, R., Keskin, R. (2003). Some physical properties of hemp seed. Biosystems Engineering, 86, 213-215.
  • Simonyan, K.J., Yiljep, Y.D., Oyatoyan, O.B., Bawa, G.S. (2009). Effects of Moisture Content on Some Physical Properties of Lablab purpureus (L.) Sweet Seeds. Agricultural Engineering International: CIGR Journal, 9, 1279.
  • Ünal, H., Alpsoy, H.C., Ayhan, A. (2013). Effect of the moisture content on the physical properties of bitter gourd seed. International Agrophysics, 27, 455-461.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ab91bc26-25dc-43e5-9329-2b758ed78f52
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.