Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The stress-strength reliability (SSRe) model is widely investigated in reliability engineering to determine the probability of the strength component overcomes the stress imposed on it. In this paper, we studied the estimation of SSRemodel based on the Burr III distribution under the improved adaptive progressive type-II censoring scheme (IAPrgCS-II). Estimation methods of the SSReparameters are developed using frequentist and Bayesian approaches. The point and interval estimations using the maximum likelihood are considered to estimate the parameters. Two approximations are applied to compute the Bayes estimates. A simulation study is conducted for the comparison of the methods of estimation. Also, parallel to the development of reliability studies, it is necessary tostudy its application in different sciences such as engineering. Therefore, the droplet splashing (DrS) data under two wettabilities are proposed as an application of the considered SSRe model and methods. The results show us that the reliability model can be used to amend the quality of coatings.
Czasopismo
Rocznik
Tom
Strony
art. no. 163054
Opis fizyczny
Bibliogr. 25 poz., rys., tab.
Twórcy
autor
- Department of Mechanical Engineering, Payame Noor University (PNU), Tehran, Iran.
autor
- Department of Mathematics and Statistics, Lahijan Branch, Islamic Azad University, Lahijan, Iran.
autor
- Department of Mathematics, College of Arts & Sciences, Wadi Ad Dawasir (11991), Prince Sattam Bin Abdulaziz University, Al-Kharj, Kingdom of Saudi Arabia.
autor
- Department of Basic Sciences, College of science and theoretical studies, Saudi electronic university, Riyadh11673, Kingdom of Saudi Arabia.
Bibliografia
- 1. Akgul FG, Senoglu B. Estimation of P(X < Y) using ranked set sampling for the Weibull distribution. Quality Technology & Quantitative Management, 2017; 14(3):296-309, https://doi.org/10.1080/16843703.2016.1226590
- 2. Asadi S, Panahi H. Estimation of stress–strength reliability based on censored data and its evaluation for coating processes. Quality Technology & Quantitative Management 2022; 19:379-401, https://doi.org/10.1080/16843703.2021.2001129.
- 3. Asadi S, Panahi H, Swarup C, Lone SA. Inference on adaptive progressive hybrid censored accelerated life test for Gompertz distribution and its evaluation for virus-containing micro droplets data. Alexandria Engineering Journal 2022; 61(12): 10071-10084, https://doi.org/10.1016/j.aej.2022.02.061.
- 4. Balakrishnan N. Progressive censoring methodology: An appraisal (with discussion). Test 2007; 16:211-296, https://doi.org/10.1007/s11749-007-0061-y.
- 5. Bai X, Shi Y, Liu Y, Liu B. Reliability estimation of stress-strength model using finite mixture distributions under progressively interval censoring. Journal of Computational and Applied Mathematics2019; 348:509-524, https://doi.org/10.1016/j.cam.2018.09.023.
- 6. Bhattacharyya GK, Johnson RA. Estimation of reliability in multicomponent stress-strength model. Journal of the American Statistical Association 1974; 69: 966-970, https://doi.org/10.2307/2286173.
- 7. Childs A, Chandrasekar B, Balakrishnan N, Kundu D. Exact likelihood inference based on Type-I and Type-II hybrid censored samples from the exponential distribution. Annals of the Institute of Statistical Mathematics 2003; 55(2):319-330, https://doi.org/10.1007/BF02530502.
- 8. Chiou K-C, Chen K-S, Lifetime performance evaluation model based on quick response thinking. Eksploatacja i Niezawodnosc-Maintenance and Reliability 2022; 24 (1): 1–6, http://doi.org/10.17531/ein.2022.1.1.
- 9. Church JD, Harris B. The estimation of reliability from stress-strength relationships. Technometrics 1970; 12(1):49-54, https://doi.org/10.2307/1267350.
- 10. Cordeiro G, Gomes A, da-Silva C, Ortega EMM. A useful extension of the Burr III distribution. Journal of Statistical Distributions and Applications 2017; 4:24, https://doi.org/10.1186/s40488-017-0079-y.
- 11. De La Cruz R, Salinas HS, Meza C. Reliability Estimation for Stress-Strength Model Based on Unit-Half-Normal Distribution. Symmetry 2022; 14(4):837, https://doi.org/10.3390/sym14040837.
- 12. Demiray D, Kizilaslan F. Stress-strength reliability estimation of a consecutive k-out-of-n system based on proportional hazard rate family. Journal of Statistical Computation and Simulation 2022; 92(1):159-190, https://doi.org/10.1080/00949655.2021.1935947.
- 13. Dutta S, Kayal S. Estimation and prediction for Burr type III distribution based on unified progressive hybrid censoring scheme. Journal of Applied Statistics 2022; https://doi.org/10.1080/02664763.2022.2113865.
- 14. Ferreira LA, Silva JL. Parameter estimation for Weibull distribution with right censored data using EM algorithm. Eksploatacja i Niezawodnosc –Maintenance and Reliability 2017; 19 (2): 310–315, http://dx.doi.org/10.17531/ein.2017.2.20.
- 15. Hastings WK. Monte Carlo sampling methods using Markov chains and their applications. Biometrika 1970; 57(1):97-109, https://doi.org/10.2307/2334940.
- 16. Kundu D, Joarder A. Analysis of Type-II progressively hybrid censored data. Computational Statistics & Data Analysis 2006; 50:2509-2528, https://doi.org/10.1016/j.csda.2005.05.002.
- 17. Lee K, Seo J-I. Different Approaches to Estimation of the Gompertz Distribution under the Progressive Type-II Censoring Scheme. Journal of Probability and Statistics 2020; 3541946:1-7, https://doi.org/10.1155/2020/3541946.
- 18. Lone SA, Panahi H. Estimation procedures for partially accelerated life test model based on unified hybrid censored sample from the Gompertz distribution. Eksploatacja i Niezawodnosc -Maintenance and Reliability 2022; 24(3):427-436, https://doi.org/10.17531/ein.2022.3.4.
- 19. Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E. Equations of state calculations by fast computing machines. Journal of Chemical Physics 1953: 21:1087-1092, https://doi.org/10.1063/1.1699114.
- 20. Ng HKT, Kundu D, Chan PS Statistical analysis of exponential lifetimes under an adaptive Type-II progressive censoring scheme. Naval Research Logistics 2009; 56(8):687-698, https://doi.org/10.1002/nav.20371.
- 21. Panahi H. Estimation of the Burr type III distribution with application in unified hybrid censored sample of fracture toughness. Journal of Applied Statistics 2017; 14:2575-2592, https://doi.org/10.1080/02664763.2016.1258549.
- 22. Rao GS, Kantam RRL, Rosaiah K, Pratapa Reddy, J. Estimation of stress–strength reliability from inverse Rayleigh distribution. Journal of Industrial and Production Engineering 2013; 30(4):256–263, https://doi.org/10.1142/S0218539319500050.
- 23. Starling JK, Mastrangelo C, Choe Y. Improving Weibull distribution estimation for generalized Type I censored data using modified SMOTE. Reliability Engineering & System Safety 2021; 211:107505, https://doi.org/10.1016/j.ress.2021.107505.
- 24. Wang BX, Yu K, Sheng Z. New Inference for Constant-Stress Accelerated Life Tests With Weibull Distribution and Progressively Type-II Censoring. IEEE Transactions on Reliability 2014; 63:807-815, https://doi.org/10.1109/TR.2014.2313804.
- 25. Yan W, Li P, Yu Y. Statistical inference for the reliability of Burr-XII distribution under improved adaptive Type-II progressive censoring. Applied Mathematical Modelling 2021; 95:38-52, https://doi.org/10.1016/j.apm.2021.01.050.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ab914826-f07c-40ab-aaed-6fbb27f7d8a5