Tytuł artykułu
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This paper presents an automated method for detection of pathological brain using magnetic resonance (MR) images. The proposed method suggests to derive features using fast discrete curvelet transform. A combined feature reduction algorithm principal component analysis + linear discriminant analysis (PCA + LDA) is then applied to generate a low-dimensional and discriminant feature vector. Finally, the classification is carried out using a hybrid regularized extreme learning machine (RELM). The proposed hybrid classifier combines RELM and sine cosine algorithm to not only overcome the drawbacks of conventional learning algorithms but also provide good generalization performance with a compact and well-conditioned network. Besides root mean square error, the norm of the output weights and the condition value of the hidden layer output matrix have been separately taken into consideration to optimize the parameters of RELM. Extensive simulations on three benchmark datasets demonstrate that the proposed scheme obtains promising results as compared to state-of-the-art approaches. The effectiveness of the proposed hybrid classifier is compared with its counterparts. Moreover, the impact of noise in the training data is analyzed using the suggested scheme. The proposed approach can aid the radiologists for screening pathological brain at a larger scale.
Wydawca
Czasopismo
Rocznik
Tom
Strony
880--892
Opis fizyczny
Bibliogr. 57 poz., rys., tab., wykr.
Twórcy
autor
- Department of Computer Science and Engineering, Indian Institute of Information Technology, Design and Manufacturing, Kancheepuram, India
autor
- Department of Computer Science and Engineering, National Institute of Technology, Rourkela, India
autor
- Department of Computer Science and Engineering, Indian Institute of Information Technology, Design and Manufacturing, Kancheepuram, India
autor
- Department of Informatics, University of Leicester, Leicester, United Kingdom
Bibliografia
- [1] Caponetti L, Castellano G, Corsini V. MR brain image segmentation: a framework to compare different clustering techniques. Information 2017;8(4):138.
- [2] El-Dahshan EA, Mohsen HM, Revett K, Salem ABM. Computer-aided diagnosis of human brain tumor through MRI: a survey and a new algorithm. Expert Syst Appl 2014;41 (11):5526–45.
- [3] Zhang Y, Nayak DR, Yang M, Yuan T-F, Liu B, Lu H, Wang S. Detection of unilateral hearing loss by stationary wavelet entropy. CNS Neurol Disord Drug Targets 2017;16(2):122–8.
- [4] Nayak DR, Dash R, Majhi B. Classification of brain MR images using discrete wavelet transform and random forests. Fifth National Conference on Computer Vision Pattern Recognition Image Processing and Graphics (NCVPRIPG) 2015;1–4. IEEE.
- [5] Chaplot S, Patnaik LM, Jagannathan NR. Classification of magnetic resonance brain images using wavelets as input to support vector machine and neural network. Biomed Signal Process Control 2006;1(1):86–92.
- [6] El-Dahshan ESA, Honsy T, Salem ABM. Hybrid intelligent techniques for MRI brain images classification. Digit Signal Process 2010;20(2):433–41.
- [7] Zhang Y, Wang S, Wu L. A novel method for magnetic resonance brain image classification based on adaptive chaotic PSO. Prog Electromagn Res 2010;109:325–43.
- [8] Zhang Y, Wu L. An MR brain images classifier via principal component analysis and kernel support vector machine. Prog Electromagn Res 2012;130:369–88.
- [9] Zhang Y, Dong Z, Wu L, Wang S. A hybrid method for MRI brain image classification. Expert Syst Appl 2011;38 (8):10049–53.
- [10] Zhang Y, Wu L, Wang S. Magnetic resonance brain image classification by an improved artificial bee colony algorithm. Prog Electromagn Res 2011;116:65–79.
- [11] Das S, Chowdhury M, Kundu K. Brain MR image classification using multiscale geometric analysis of ripplet. Prog Electromagn Res 2013;137:1–17.
- [12] Dong Z, Liu A, Wang S, Ji G, Zhang Z, Yang J. Magnetic resonance brain image classification via stationary wavelet transform and generalized eigenvalue proximal support vector machine. J Med Imaging Health Inform 2015;5 (7):1395–403.
- [13] Nayak DR, Dash R, Majhi B. Brain MR image classification using two-dimensional discrete wavelet transform and AdaBoost with random forests. Neurocomputing 2016;177:188–97.
- [14] Chen X-Q, Zhan T-M, Jiao Z-Q, Sun Y, Yao Y, Fang L-T, Lv Y-D, Wang S-H. Fractal dimension estimation for developing pathological brain detection system based on Minkowski– Bouligand method. IEEE Access 2016;4:5937–47.
- [15] Nayak DR, Dash R, Majhi B. Discrete ripplet-II transform and modified PSO based improved evolutionary extreme learning machine for pathological brain detection. Neurocomputing 2018;282:232–47.
- [16] Zhang Y-D, Jiang Y, Zhu W, Lu S, Zhao G. Exploring a smart pathological brain detection method on pseudo Zernike moment. Multimedia Tools Appl 2018;77(17):22589–604.
- [17] Dong Z, Wang S, Ji G, Yang J. Preclinical diagnosis of magnetic resonance (MR) brain images via discrete wavelet packet transform with Tsallis entropy and generalized eigenvalue proximal support vector machine. Entropy 2015;17(4):1795–813.
- [18] Wang S, Zhang Y, Yang X, Sun P, Dong Z, Liu A, Yuan T-F. Pathological brain detection by a novel image feature-fractional Fourier entropy. Entropy 2015;17(12):8278–96.
- [19] Zhou X, Wang S, Xu W, Ji G, Phillips P, Sun P, Zhang Y. Detection of pathological brain in MRI scanning based on wavelet-entropy and naive Bayes classifier. in: Bioinformatics and Biomedical Engineering 2015;201–9.
- [20] Zhang Y, Wang S, Sun P, Phillips P. Pathological brain detection based on wavelet entropy and Hu moment invariants. Bio-med Mater Eng 2015;26(s1):S1283–90.
- [21] Yang G, Zhang Y, Yang J, Ji G, Dong Z, Wang S, Feng C, Wang Q. Automated classification of brain images using wavelet-energy and biogeography-based optimization. Multimedia Tools Appl 2016;75(23):15601–17.
- [22] Wang S, Lu S, Dong Z, Yang J, Yang M, Zhang Y. Dual-tree complex wavelet transform and twin SVM for pathological brain detection. Appl Sci 2016;6(6):169.
- [23] Lu S, Qiu X, Shi J, Li N, Lu Z-H, Chen P, Yang M-M, Liu F-Y, Jia W-J, Zhang Y. A pathological brain detection system based on extreme learning machine optimized by bat algorithm. CNS Neurol Disord Drug Targets 2017;16(1):23–9.
- [24] Nayak DR, Dash R, Majhi B. Stationary wavelet transform and adaboost with SVM based pathological brain detection in MRI scanning. CNS Neurol Disord Drug Targets 2017;16 (2):137–49.
- [25] Zhang Y-D, Zhao G, Sun J, Wu X, Wang Z-H, Liu H-M, Govindaraj VV, Zhan T, Li J. Smart pathological brain detection by synthetic minority oversampling technique, extreme learning machine, and Jaya algorithm. Multimedia Tools Appl 2017;1–20.
- [26] Lu S, Lu Z, Yang J, Yang M, Wang S. A pathological brain detection system based on kernel based ELM. Multimedia Tools Appl 2018;77(3):3715–28.
- [27] Wang S, Du S, Atangana A, Liu A, Lu Z. Application of stationary wavelet entropy in pathological brain detection. Multimedia Tools Appl 2018;77(3):3701–14.
- [28] Zacharaki EI, Wang S, Chawla S, Soo Yoo D, Wolf R, Melhem ER, Davatzikos C. Classification of brain tumor type and grade using MRI texture and shape in a machine learning scheme. Magn Reson Med 2009;62(6):1609–18.
- [29] Hemanth DJ, Vijila CKS, Anitha J. Performance improved PSO based modified counter propagation neural network for abnormal MR brain image classification. Int J Adv Soft Comput Appl 2010;2(1):65–84.
- [30] Hu LS, Ning S, Eschbacher JM, Gaw N, Dueck AC, Smith KA, Nakaji P, Plasencia J, Ranjbar S, Price SJ, et al. Multi-parametric MRI and texture analysis to visualize spatial histologic heterogeneity and tumor extent in glioblastoma. PLoS ONE 2015;10(11):e0141506.
- [31] Kaur T, Saini BS, Gupta S. A novel feature selection method for brain tumor MR image classification based on the fisher criterion and parameter-free bat optimization. Neural Comput Appl 2018;29(8):193–206.
- [32] Kaur T, Saini BS, Gupta S. An optimal spectroscopic feature fusion strategy for MR brain tumor classification using fisher criteria and parameter-free BAT optimization algorithm. Biocybern Biomed Eng 2018;38(2):409–24.
- [33] Mohan G, Subashini MM. MRI based medical image analysis: survey on brain tumor grade classification. Biomed Signal Process Control 2018;39:139–61.
- [34] Liao L, Lin T. MR brain image segmentation based on kernelized fuzzy clustering using fuzzy Gibbs random field model. in: 2007 IEEE/ICME International Conference on Complex Medical Engineering 2007;529–35. IEEE.
- [35] Yang X, Fei B. A multiscale and multiblock fuzzy C-means classification method for brain MR images. Med Phys 2011;38(6):2879–91.
- [36] Li Y, Jia F, Qin J. Brain tumor segmentation from multimodal magnetic resonance images via sparse representation. Artif Intell Med 2016;73:1–13.
- [37] Ilunga-Mbuyamba E, Avina-Cervantes JG, Garcia-Perez A, de Jesus Romero-Troncoso R, Aguirre-Ramos H, Cruz- Aceves I, Chalopin C. Localized active contour model with background intensity compensation applied on automatic MR brain tumor segmentation. Neurocomputing 2017;220:84–97.
- [38] Narayanan A, Rajasekaran MP, Zhang Y, Govindaraj V, Thiyagarajan A. Multi-channeled MR brain image segmentation: a novel double optimization approach combined with clustering technique for tumor identification and tissue segmentation. Biocybern Biomed Eng 2018.
- [39] Nayak DR, Dash R, Lu Z, Lu S, Majhi B. SCA-RELM: a new regularized extreme learning machine based on sine cosine algorithm for automated detection of pathological brain. in: 27th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN) 2018;764–9. IEEE.
- [40] Johnson KA, Becker JA. The whole brain atlas; 1999, http:// www.med.harvard.edu/AANLIB/.
- [41] Nayak DR, Dash R, Majhi B, Prasad V. Automated pathological brain detection system: a fast discrete curvelet transform and probabilistic neural network based approach. Expert Syst Appl 2017;88:152–64.
- [42] Starck J-L, Candès EJ, Donoho DL. The curvelet transform for image denoising. IEEE Trans Image Process 2002;11 (6):670–84.
- [43] Candes E, Demanet L, Donoho D, Ying L. Fast discrete curvelet transforms. Multiscale Model Simul 2006;5(3):861–99.
- [44] Uçar A, Demir Y, Güzelis C. A new facial expression recognition based on curvelet transform and online sequential extreme learning machine initialized with spherical clustering. Neural Comput Appl 2016;27 (1):131–42.
- [45] Sumana IJ, Islam MM, Zhang D, Lu G. Content based image retrieval using curvelet transform. Multimedia Signal Processing 2008 IEEE 10th Workshop on 2008;11–6. IEEE.
- [46] Yang J, Yang J-y. Why can LDA be performed in PCA transformed space? Pattern Recogn 2003;36(2):563–6.
- [47] Huang G-B, Wang DH, Lan Y. Extreme learning machines: a survey. Int J Mach Learn Cybern 2011;2(2):107–22.
- [48] Huang G-B, Zhou H, Ding X, Zhang R. Extreme learning machine for regression and multiclass classification. IEEE Trans Syst Man Cybern Part B (Cybern) 2012;42(2):513–29.
- [49] Huang G-B, Zhu Q-Y, Siew C-K. Extreme learning machine: theory and applications. Neurocomputing 2006;70 (1):489–501.
- [50] Deng W, Zheng Q, Chen L. Regularized extreme learning machine. IEEE Symposium on Computational Intelligence and Data Mining (CIDM'09) 2009;389–95. IEEE.
- [51] Zhao G, Shen Z, Miao C, Man Z. On improving the conditioning of extreme learning machine: a linear case. 7th International Conference on Information Communications and Signal Processing 2009;1–5. ICICS, IEEE.
- [52] Suresh S, Babu RV, Kim H. No-reference image quality assessment using modified extreme learning machine classifier. Appl Soft Comput 2009;9(2):541–52.
- [53] Xu Y, Shu Y. Evolutionary extreme learning machine based on particle swarm optimization. International Symposium on Neural Networks 2006;644–52. Springer.
- [54] Zhu Q-Y, Qin AK, Suganthan PN, Huang G-B. Evolutionary extreme learning machine. Pattern Recognit 2005;38 (10):1759–63.
- [55] Mirjalili S. SCA: a sine cosine algorithm for solving optimization problems. Knowl Based Syst 2016;96:120–33.
- [56] Bartlett PL. The sample complexity of pattern classification with neural networks: the size of the weights is more important than the size of the network. IEEE Trans Inf Theory 1998;44(2):525–36.
- [57] Han F, Yao H-F, Ling Q-H. An improved evolutionary extreme learning machine based on particle swarm optimization. Neurocomputing 2013;116:87–93.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ab910840-b60a-4245-8555-7667fa80823a