PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical analysis of tissue heating using the bioheat transfer porous model

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper concerns the modelling of artificial hyperthermia. The 3D domain including healthy tissue and tumor region is considered. Heat transfer processes proceeding in this domain are described by the Pennes model and next by the porous one. The external heating of tissue is taken into account by the introduction of internal source function to the equation considered. Both models are supplemented by the same geometrical, physical, boundary and initial conditions. At the stage of numerical simulation the explicit scheme of finite difference method is used. The examples of computations show the similarities and differences of solutions and allow to formulate the conclusions connected with the applications of the results obtained in the hyperthermia therapy.
Rocznik
Strony
123--131
Opis fizyczny
Bibliogr. 25 poz., rys., tab., wykr.
Twórcy
autor
  • Institute of Computational Mechanics and Engineering, Silesian University of Technology, Konarskiego 18a, 44-100 Gliwice, Poland
autor
  • Institute of Computational Mechanics and Engineering, Silesian University of Technology, Konarskiego 18a, 44-100 Gliwice, Poland
Bibliografia
  • [1] N. Afrin, Y. Zhang, J.K. Chen. Thermal lagging in living biological tissue based on nonequilibrium heat transfer between tissue, arterial and venous bloods. International Journal of Heat and Mass Transfer, 54 : 2419–2426, 2011.
  • [2] C. Cattaneo. A form of heat conduction equation which eliminates the paradox of instantaneous propagation. Comp. Rend., 247 : 431–433, 1958.
  • [3] M. Ciesielski, B. Mochnacki. Numerical analysis of interactions between skin surface temperature and burn wound shape. Scientific Research of Institute of Mathematics and Computer Science, 1 (11): 15–22, 2012.
  • [4] G. Comini, L. Del Giudice. Thermal aspects of cryosurgery. Journal of Heat Transfer, 98 : 543–549, 1976.
  • [5] K. Erhart, E. Divo, A. Kassab. An evolutionary-based inverse approach for the identification of non-linear heat generation rates in living tissues using localized meshles s method. International Journal of Numerical Methods for Heat and Fluid Flow, 18 (3): 401–414, 2008.
  • [6] W. Kaminski. Hyperbolic heat conduction equation for materials with a nonhomogeneous inner structure. Journal of Heat Transfer, 112 : 555–560, 1990.
  • [7] A.R.A. Khaled, K. Vafai. The role of porous media in modeling flow and heat transfer in biological tissues. International Journal of Heat and Mass Transfer, 46 : 4989–5003, 2003.
  • [8] J. Liu, L.X. Xu. Boundary information based diagnostics on the thermal states of biological bodies. Journal of Heat and Mass Transfer, 43 : 2827–2839, 2000.
  • [9] E. Majchrzak. Numerical modelling of bioheat transfer using the boundary element method. Journal of Theoretical and Applied Mechanics, 2 (36): 437–455, 1998.
  • [10] E. Majchrzak. Numerical solution of dual phase lag model of bioheat transfer using the general boundary element method. CMES: Computer Modeling in Engineering and Sciences, 69 (1): 43–60, 2010.
  • [11] E. Majchrzak, M. Dziewoński. Numerical simulation of f reezing process using the BEM. Computer Assisted Mechanics and Engineering Sciences, 7 : 667–676, 2000.
  • [12] E. Majchrzak, B. Mochnacki. Numerical methods. Theoretical bases, practical aspects and algorithms. Publ. of the Silesian University of Technology, Gliwice, Poland, 2004.
  • [13] E. Majchrzak, J. Poteralska, Ł. Turchan. Comparison of different bioheat transfer models used in numerical modelling of a hyperthermia therapy. International Conference of the Polish Society of Biomechanics “Biomechanics 2010”, Book of Abstracts, 137–138, Warsaw, Poland, 2010.
  • [14] E. Majchrzak, Ł. Turchan. Numerical modeling of a hyperthermia therapy using dual-phase-lag model of bioheat transfer. 19th International Conference on Computer Methods in Mechanics CMM 2011, Short Papers, 337–338, Warsaw, Poland, 2011.
  • [15] B. Mochnacki, M. Dziewoński. Numerical analysis of cyclic freezing. Acta of Bioengineering and Biomechanics, 6 (1): 476–479, 2004.
  • [16] B. Mochnacki, E. Majchrzak. Sensitivity of the skin tissue on the activity of external heat sources. CMES: Computer Modeling in Engineering and Sciences, 4 (3–4): 431–438, 2003.
  • [17] A. Nakayama, F. Kuwahara. A general bioheat transfer model based on the theory of porous media. International Journal of Heat and Mass Transfer , 51 : 3190–3199, 2008.
  • [18] T. Peng, D.P. O’Neill, S.J. Payne. A two-equation coupled system for determination of liver tissue temperature during thermal ablation. International Journal of Heat and Mass Transfer , 54 : 2100–2109, 2011.
  • [19] H.H. Pennes. Analysis of tissue and arterial blood temperatures in the resting human forearm. Journal of Applied Physiology, l : 93–122, 1948.
  • [20] W. Shen, J. Zhang, F. Yang. Modeling and numerical simulation of bioheat transfer and biomechanics in soft tissue. Mathematical and Computer Modelling, 41 : 1251–1265, 2005.
  • [21] P. Vernotte. Les paradoxes de la theorie continue de l’equation de la chaleur. Comp. Rend., 246 : 3154–3155, 1958.
  • [22] F. Xu, K.A. Seffen, T.J. Lu, Non-Fourier analysis of skin biothermomechanics. International Journal of Heat and Mass Transfer, 51 : 2237–2259, 2008.
  • [23] P. Yuan. Numerical analysis of temperature and thermal dose response of biological tissues to thermal non-equilibrium during hyperthermia therapy. Medical Engineering & Physics, 30 : 135–143, 2008.
  • [24] F. Xu, K.A. Seffen, T.J. Lu. Non-Fourier analysis of skin biothermomechanics. International Journal of Heat and Mass Transfer, 51 : 2237–2259, 2008.
  • [25] J. Zhou, J.K. Chen, Y. Zhang. Dual-phase lag effects on thermal damage to biological tissues caused by laser irradiation. Computers in Biology and Medicine, 39 : 286–293, 2009.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ab8a0b1e-718b-4f77-bc90-35b6b12813f5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.