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Abstract. This work studies the dependence of the solution with respect to interface geo-
metric perturbations, in a multiscaled coupled Darcy flow system in direct variational for-
mulation. A set of admissible perturbation functions and a sense of convergence is presented,
as well as sufficient conditions on the forcing terms, in order to conclude strong convergence
statements. For the rate of convergence of the solutions we start solving completely the one
dimensional case, using orthogonal decompositions on the appropriate subspaces. Finally, the
rate of convergence question is analyzed in a simple multi dimensional setting, by studying
the nonlinear operators introduced due to the geometric perturbations.
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1. INTRODUCTION

The study of saturated flow in geological porous media frequently presents natural
structures with a dense network of fissures nested in the rock matrix [18,22]. It is also
frequent to observe vuggy porous media [1], which have the presence of cavities in the
rock matrix significantly larger than the average pore size of the medium. This is a
multi scale physics phenomenon, because there are regions of the medium where the
flow velocity is significantly larger than the velocity on the other ones. The modeling of
the interface between regions is subject to very active research: first, fluid transmission
conditions across the interface are of great importance, see [3,20] for the discussion of
governing laws; see [2,7] for a numerical point of view; see [1,5,12,16] for the analytic
approach and [4, 21] for a more general perspective. Second, the placement of the
interface is debatable since a boundary layer phenomenon between regions occurs, see
[10,19] for discussion. The interface couples regions of slow velocity (order O(1)) and
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fast flow (order O(1/ε)), see Figure 1. Hence, its placement and geometric description
become an important issue because perturbations of the interface are inevitable. On
one hand the geological strata data available are always limited, on the other hand the
numerical implementation of models involving curvy interfaces, in most of the cases
can only approximate the real surface. Finally, on a very different line, in the analysis
of saturated flow in deformable porous media, one of the aspects is understanding the
geometric perturbations of an interface of reference.

Clearly, the continuity of the solution with respect to the geometry of the interface
is an important issue, which has received very little treatment and mainly limited to
flat interfaces. Most of the theoretical achievements in the field of multiscale coupled
systems, concentrate their efforts in removing the singularities introduced by the
scales using homogenization processes. These techniques can be either formal [13,17],
analytic [11] or numerical [14].

Here, we model the stationary problem with a coupled system of partial differential
equations of Darcy flow in both regions, in direct variational formulation. We simulate
the region of fast flow scaling by 1

ε the ratio of permeability over viscosity, as in Fig-
ure 1. It will be assumed that the real interface Γ is horizontal flat and the perturbed
one Γζ is curved. Of course, a flat surface will not be perturbed when discretized
and seems unrealistic to consider perturbations of it. Our choice is motivated by two
reasons: first, for the sake of clarity in the notation, calculation and interpretation of
the results. Second, when studying the phenomenon of saturated flow in deformable
porous media perturbations of a flat surface are of interest. It is important to highlight
that the mathematical essentials of the problem are captured in this framework.

The paper starts proving in Section 2, that the solutions depend continuously
with respect to the interface, then it moves to the much deeper question of exploring
the nature of the dependence itself. In Section 3, for the one dimensional case, the
rate of convergence question is solved completely using orthogonal decomposition in
adequate subspaces. Finally, Section 4 reveals the highly nonlinear dependence of the
solutions with respect to the interface.

We close this section introducing the notation. Vectors are denoted by boldface
letters, as are vector-valued functions and corresponding function spaces. We use x̃
to indicate a vector in RN−1; if x ∈ RN , then the RN−1 ×{0} projection is identified
with x̃

def
= (x1, x2, . . . , xN−1), so that x = (x̃, xN). The symbol ê` indicates the unitary

vector in the `-th direction for 1 ≤ ` ≤ N . We denote by ν̂ the outwards normal vector
to a smooth domain in RN and n̂ indicates the upwards normal vector, i.e., n̂·êN ≥ 0.
We write 1A for the indicator function of any given set A in RN or RN−1, and the
Lebesgue measure in RN is denoted by λN . The symbol ∇̃ represents the gradient in
the first N − 1 derivatives.

Given a function f : RN → R then,
∫
M
f dS is the notation for its surface integral

on the RN−1 manifold M ⊆ RN . The notation
∫
A
f dx stands for the volume integral

in the open set A ⊆ RN ; whenever the context is clear we simply write
∫
A
f . In this

work we restrict to domains, which are open, connected and with smooth boundary.
The notation ‖·‖0,A, ‖·‖1,A, ‖·‖ 1

2 ,∂A
, ‖·‖− 1

2 ,∂A
indicates the L2(A), H1(A), H

1
2 (∂A)
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and H−
1
2 (∂A) norms on the domain A ⊆ RN . Recall that

H
1
2 (∂A)

def
= {γ(r) : r ∈ H1(A)}, (1.1a)

‖w‖ 1
2 ,∂A

def
= inf{‖r‖1,A : r ∈ H1(A), γ(r) = w}, (1.1b)

where γ is the trace operator. Its dual space is given by

H−
1
2 (∂A)

def
= (H

1
2 (∂A))′, (1.1c)

‖`‖− 1
2 ,∂A

def
= sup{|`(w)| : w ∈ H 1

2 (∂A), ‖w‖ 1
2 ,∂A

= 1}.

2. FORMULATION AND CONVERGENCE

2.1. GEOMETRIC SETTING

In the following Γ denotes a connected set in RN−1×{0} whose projection onto RN−1

is open. From now on we make no distinction between these two domains. Similarly,
Ω1,Ω2 denote smooth bounded open regions in RN separated by Γ, i.e., ∂Ω1∩∂Ω2 = Γ,
and such that sgn(x · êN) = (−1)i for each x ∈ Ωi, i = 1, 2 (see Figure 1).

Γ Γ

Ω2

Ω1

Γζ

Ω1
ζ

Ω2
ζ

k=
k 2
ϵ

k=k1

k=
k 2
ϵ

k=k1

Fig. 1. Original domain and a perturbation
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Next, we introduce the admissible perturbations of the interface Γ.

Definition 2.1. We say that the set T (Γ,Ω) of piecewise C1 perturbations of the
interface Γ, contained in Ω is given by

T (Γ,Ω)
def
= {ζ ∈ C

(
Γ
)

: (x̃, ζ(x̃ )) ∈ Ω for all x̃ ∈ Γ,

ζ |∂Γ = 0 and ζ is a piecewise C1 function }.
(2.1)

The interface associated to ζ ∈ T (Γ,Ω) is given by the set

Γ ζ def
= {(x̃, ζ(x̃ )) ∈ RN : x̃ ∈ Γ}. (2.2a)

The domains associated to ζ ∈ T (Γ,Ω) are defined by the sets

Ω ζ
1

def
= {(x̃, xN) ∈ Ω : x̃ ∈ Γ, xN < ζ(x̃ )} , (2.2b)

Ω ζ
2

def
= {(x̃, xN) ∈ Ω : x̃ ∈ Γ, ζ(x̃ ) < xN} . (2.2c)

Remark 2.2. Observe the following facts

∂Ω ζ
1 ∩ ∂Ω ζ

2 = Γ ζ , (2.3a)

Ω ζ
1 ∪ Γ ζ ∪ Ω ζ

2 = Ω, (2.3b)

∂Ω ζ
1 − Γ ζ = ∂Ω1 − Γ, (2.3c)

∂Ω ζ
2 − Γ ζ = ∂Ω2 − Γ. (2.3d)

Definition 2.3. Define the space

V
def
= {u ∈ H 1(Ω) : u|∂Ω1−Γ = 0}, (2.4)

endowed with the inner product 〈·, ·〉 : V × V → R

〈u, v〉V def
=

∫

Ω

∇u ·∇v, (2.5)

and the norm ‖u‖V def
=
√
〈u, u〉V .

Remark 2.4. Recall that due to the boundary condition defining the space V and
the Poincaré inequality, the ‖ · ‖V -norm is equivalent to the standard H1-norm.
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2.2. THE PROBLEMS

Consider the strong problem

−∇ · ki
ε i−1

∇pi = F in Ωi, i = 1, 2, (2.6a)

with the interface conditions

p1 = p2, k1 ∇p1 · n̂−
k2

ε
∇p2 · n̂ = f on Γ, (2.6b)

and the boundary conditions

p1 = 0 on ∂Ω1 − Γ, ∇p2 · n̂ = 0 on ∂Ω2 − Γ. (2.6c)

Now, its perturbation in strong form is given by

−∇ · ki
ε i−1

∇qi = F in Ωζi , i = 1, 2, (2.7a)

with the interface conditions

q1 = q2, k1 ∇q1 · n̂−
k2

ε
∇q2 · n̂ = f on Γ ζ , (2.7b)

and the boundary conditions

q1 = 0 on ∂Ωζ1 − Γ ζ , ∇q2 · n̂ = 0 on ∂Ωζ2 − Γ ζ . (2.7c)

Both systems above model stationary Darcy flow, coupling the regions depicted in
the left and right hand side of Figure 1, respectively. The coefficients k1, k2 indicate
the permeability in the corresponding domain; for simplicity they will be omitted in
the following. The scaling factor 1

ε ensures a much higher velocity O( 1
ε ) in the upper

region with respect to the lower region fluid velocity O(1). The term F stands for
fluid sources and f for a normal flux forcing term on the interface. It is assumed that
f is a well defined L2-function on both manifolds Γ and Γζ . Hence, the weak problems
in direct formulation are given by

p ∈ V :

∫

Ω1

∇p ·∇r +
1

ε

∫

Ω2

∇p ·∇r =

∫

Ω

F r +

∫

Γ

f r dS for all r ∈ V, (2.8a)

q ζ ∈ V :

∫

Ωζ1

∇q ζ ·∇r+
1

ε

∫

Ωζ2

∇q ζ ·∇r =

∫

Ω

F r+

∫

Γζ

f r dS for all r ∈ V. (2.8b)

Theorem 2.5. The problems (2.8a) and (2.8b) are well-posed.

Proof. The result follows by a direct application of Lax-Milgram’s lemma and the
Poincaré inequality, see [15] for details.
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2.3. A-PRIORI ESTIMATES AND WEAK CONVERGENCE

In this section, under reasonable conditions on the forcing terms and the appropriate
type of convergence for the perturbations ζ, a-priori estimates on the solutions of
problems (2.8b) as well as weak convergence statements to the solution of problem
(2.8a) are attained. For test equation (2.8b) with the solution qζ , due to the boundary
conditions of V and the Poincaré constant CΩ we get

1

1 + C2
Ω

‖ qζ‖ 2
1,Ω ≤ ‖∇qζ‖ 2

0,Ω ≤ ‖∇qζ‖ 2
0,Ωζ1

+
1

ε
‖∇qζ‖ 2

0,Ωζ2

≤ ‖F‖0,Ω ‖qζ‖0,Ω +

∫

Γζ

f qζ dS.
(2.9)

If a sequence of perturbations {ζn} ⊆ T (Γ,Ω) is to be analyzed, conditions on the
type of convergence must be specified. For the perturbations, we assume that

ess sup
{
|(−∇̃ζn(x̃), 1)| : x̃ ∈ Γ

}
≤ C0, n ∈ N, (2.10a)

i.e., the gradients are globally bounded. Additionally assume uniform convergence

‖ζn‖C(Γ) −→
n→∞

0. (2.10b)

From now on, we denote by Γn = Γζn and qn = qζn .
For the forcing terms we assume there exists an open set G containing {Γn} and

an element Φ ∈ Hdiv(G); with G an open region such that Φ · n̂|Γn = f for all n. Here
n̂ denotes the upwards normal vector to Γn and

Hdiv(G) = {v ∈ L2(G) : ∇ · v ∈ L2(G)},

where L2(G) = (L2(G))N is the Lebesgue space of vector-valued functions. Given
x̃ ∈ Γ we denote by x̃× (0, ζn(x̃)) ∪ x̃× (ζn(x̃), 0) the sections in RN understanding
that

x̃× (0, ζn(x̃)) ∪ x̃× (ζn(x̃), 0) =





x̃× (0, ζn(x̃)), if ζn(x̃)) < 0,

x̃× (ζn(x̃), 0), if ζn(x̃)) > 0,

∅, if ζn(x̃)) = 0.

(2.11)

Define
Un

def
=
⋃

x̃∈Γ

x̃× (0, ζn(x̃)) ∪ x̃× (ζn(x̃), 0). (2.12)

Hence, ∂Un = Γn ∪ Γ. Due to the condition (2.10a) the domain Un has Lipschitz
boundary, then the classical duality relationship [23] holds, i.e.,

∫

Γn

f qn dS −
∫

Γ

f qn dS =

∫

∂Un

Φ · n̂ qn dS =

∫

Un

∇ · Φ qn + Φ ·∇qn.
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Therefore ∫

Γn

f qn dS ≤ ‖f‖− 1
2 ,Γ
‖qn‖ 1

2 ,Γ
+ ‖Φ‖Hdiv(Γ)‖qn‖1,Ω

≤ {‖f‖− 1
2 ,Γ

+ ‖Φ‖Hdiv(Γ)}‖qn‖1,Ω.
(2.13)

Combining (2.13) with (2.9) gives

‖ qn‖1,Ω ≤ {CΩ‖F‖0,Ω + ‖f‖− 1
2 ,Γ

+ ‖Φ‖Hdiv(Γ)}. (2.14)

Due to the Rellich-Kondrachov theorem, there must exist a subsequence, denoted by
{qk}, and an element q∗ ∈ H1(Ω) such that

qk → q∗ weekly in H1(Ω) and strongly in L2(Ω).

Denoting Ωki = Ωζki for i = 1, 2, the variational statement can be written as
∫

Ω

∇qk ·∇r 1Ωk1
+

1

ε

∫

Ω

∇qk ·∇r 1Ωk2
=

∫

Ω

F r +

∫

Γk

f r dS (2.15)

for r ∈ V arbitrary. Let ζk → 0 in C(Γ), first observe that for any r ∈ H1(Ω) holds
∣∣∣∣∣∣

∫

Γk

f r dS −
∫

Γ

f r dS

∣∣∣∣∣∣
=

∣∣∣∣∣∣

∫

Uk

∇ · Φ r + Φ ·∇r

∣∣∣∣∣∣
≤ ‖Φ‖Hdiv(Uk)‖r‖H1(Uk).

Since the right hand side converges to 0 as k → ∞ it follows that
∫

Γk
f r dS →∫

Γ
f r dS. Next observe that {∇r 1Ωki

} converges strongly in L2(Ω); together with the
convergence of the surface forcing terms previously discussed, the expression (2.15)
converges to

∫

Ω

∇q∗ ·∇r 1Ω1 +
1

ε

∫

Ω

∇q∗ ·∇r 1Ω2 =

∫

Ω

F r +

∫

Γ

f r dS.

Since q∗ is in V and the variational statement above holds for all r ∈ V , the uniqueness
of the solution of the problem (2.8a), implies that q∗ = p. The reasoning above holds
for any subsequence of {qn} and the solution of (2.8a) is unique, then it follows that
the whole sequence converges to p, i.e.,

qn → p weekly in H1(Ω), strongly in L2(Ω). (2.16)

We close the section with an important observation. Testing the statements (2.8b) on
the diagonal qn and letting n→∞ yields

lim
n→∞

{∫

Ωn1

|∇qn|2 +
1

ε

∫

Ωn2

|∇qn|2
}

=

∫

Ω

F p+

∫

Γ

f p dS

=

∫

Ω1

|∇p|2 +
1

ε

∫

Ω2

|∇p|2.
(2.17)
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The maps

r 7→
{∫

Ω1

|∇r|2 +
1

ε

∫

Ω2

|∇r|2
} 1

2

and

r 7→
{∫

Ωn1

|∇r|2 +
1

ε

∫

Ωn2

|∇r|2
} 1

2

,

for any n ∈ N, are norms equivalent to the norm ‖ · ‖V . However, due to the presence
of the domains Ωni , i = 1, 2 the equality (2.17) is not a statement of norms conver-
gence which, together with the weak convergence, would allow us to conclude strong
convergence. However, due to the weak convergence and the equivalence of the norms
r 7→ {

∫
Ω1
|∇r|2 + 1

ε

∫
Ω2
|∇r|2} 1

2 and ‖ · ‖V , we can conclude that

∫

Ω1

|∇p|2 +
1

ε

∫

Ω2

|∇p|2 ≤ lim inf
n





∫

Ω1

|∇qn|2 +
1

ε

∫

Ω2

|∇qn|2


 . (2.18)

2.4. THE STRONG CONVERGENCE

Given a function r ∈ V consider the following identities
∫

Ωζ1

|∇r|2 =

∫

Ωζ1−Ω1

|∇r|2 −
∫

Ωζ2−Ω2

|∇r|2 +

∫

Ω1

|∇r|2, (2.19a)

∫

Ωζ2

|∇r|2 =

∫

Ωζ2−Ω2

|∇r|2 −
∫

Ωζ1−Ω1

|∇r|2 +

∫

Ω2

|∇r|2. (2.19b)

We define the perturbation term as

Ξζ(r)
def
=

∫

Ωζ2−Ω2

|∇r|2 −
∫

Ωζ1−Ω1

|∇r|2. (2.20)

Moreover, the perturbation term satisfies

|Ξζ(r)| =

∣∣∣∣∣∣∣

∫

Ωζ2−Ω2

|∇r|2 −
∫

Ωζ1−Ω1

|∇r|2
∣∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣

∫

Ωζ2−Ω2

|∇r|2
∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣

∫

Ωζ1−Ω1

|∇r|2
∣∣∣∣∣∣∣

≤ ‖r‖2V
[
λN (Ωζ1 − Ω1) + λN (Ωζ2 − Ω2)

]
.

(2.21)



Notes on the nonlinear dependence of a multiscale coupled system. . . 525

Therefore, the following estimate holds
∫

Ωζ1

|∇r|2 +
1

ε

∫

Ωζ2

|∇r|2 =

∫

Ω1

|∇r|2 +
1

ε

∫

Ω2

|∇r|2 +

(
1− 1

ε

)
Ξζ(r)

≥
∫

Ω1

|∇r|2 +
1

ε

∫

Ω2

|∇r|2

−
∣∣∣∣1−

1

ε

∣∣∣∣
[
λN (Ωζ1 − Ω1) + λN (Ωζ2 − Ω2)

]
‖r‖2V .

We know that ‖r‖2V ≤ {
∫

Ω1
|∇r|2 + 1

ε

∫
Ω2
|∇r|2}. This, combined with the expression

above gives
∫

Ωζ1

|∇r|2 +
1

ε

∫

Ωζ2

|∇r|2

≥
(

1−
∣∣∣∣1−

1

ε

∣∣∣∣
[
λN (Ωζ1 − Ω1) + λN (Ωζ2 − Ω2)

]){∫

Ω1

|∇r|2 +
1

ε

∫

Ω2

|∇r|2
}
.

Defining

Cζ
def
=

∣∣∣∣1−
1

ε

∣∣∣∣
[
λN (Ωζ1 − Ω1) + λN (Ωζ2 − Ω2)

]
, (2.22)

we get the estimate

∫

Ωζ1

|∇r|2 +
1

ε

∫

Ωζ2

|∇r|2 ≥ (1− Cζ)
{∫

Ω1

|∇r|2 +
1

ε

∫

Ω2

|∇r|2
}

for all r ∈ V. (2.23)

In particular, for the sequence of solutions {qn : n ∈ N} ⊆ V , it holds that

(1− Cζn)

{∫

Ω1

|∇qn|2 +
1

ε

∫

Ω2

|∇qn|2
}
≤
∫

Ωn1

|∇qn|2 +
1

ε

∫

Ωn2

|∇qn|2.

Letting n → ∞ it follows that ‖ζn‖C(Γ) → 0. Consequently Cζn → 0. Therefore,
taking the limit superior in the expression above yields

lim sup
n→∞

{∫

Ω1

|∇qn|2 +
1

ε

∫

Ω2

|∇qn|2
}
≤ lim sup

n→∞

{∫

Ωn1

|∇qn|2 +
1

ε

∫

Ωn2

|∇qn|2
}

=

∫

Ω1

|∇p|2 +
1

ε

∫

Ω2

|∇p|2,
(2.24)
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where the last equality holds due to (2.17). Putting together (2.18) and (2.24) we
conclude that

lim
n→∞

{∫

Ω1

|∇qn|2 +
1

ε

∫

Ω2

|∇qn|2
}

=

∫

Ω1

|∇p|2 +
1

ε

∫

Ω2

|∇p|2, (2.25)

i.e., the norms r 7→ {
∫

Ω1
|∇r|2 + 1

ε

∫
Ω2
|∇r|2} 1

2 converge and, due to the equivalence
with the V -norm it follows that ‖qn‖V → ‖p‖V . Finally, since {qn} converges weakly
to p in V it follows that

‖qn − p‖2V → 0 as n→∞. (2.26)

3. THE ONE DIMENSIONAL CASE

Here, we restrict our attention to the one dimensional problem in order to gain deep
insight on the phenomenon. An example of how valuable this approach is, can be
found in [6]. For the problem in one dimensional setting we choose Ω1

def
= (−1, 0),

Ω2
def
= (0, 1) and the interface Γ = {0}. In this context a perturbation is given

by a single point ζ ∈ (−1, 1); the perturbed domains are given by Ω ζ
1

def
= (−1, ζ),

Ω ζ
2

def
= (ζ, 1) and the perturbed interface Γ ζ def

= {ζ}. Clearly Ω = Ω1 ∪ Γ ∪ Ω2 =

Ω ζ
1 ∪ Γ ζ ∪ Ω ζ

2 = (−1, 1), see Figure 2. Notice that in the one dimensional case, the
space V and its inner product given in Definition 2.3, reduce to

V =
{
r ∈ H1(−1, 1) : r(−1) = 0

}
, (3.1a)

〈π, κ〉V =

1∫

−1

∂π ∂κ, (3.1b)

where ∂ indicates the weak derivative. Similarly, the problems (2.8a) and (2.8b) trans-
form in

p ∈ V :

0∫

−1

∂p ∂r +
1

ε

1∫

0

∂p ∂r =

1∫

−1

F r + f (0) r (0) for all r ∈ V, (3.2a)

q ∈ V :

ζ∫

−1

∂q ∂r +
1

ε

1∫

ζ

∂q ∂r =

1∫

−1

F r + f (ζ) r (ζ) for all r ∈ V. (3.2b)

3.1. THE SUBSPACE H AND ITS ORTHOGONAL PROJECTION

In order to estimate the norms ‖p−qζ‖1,Ω, ‖p−qζ‖0,Ω, we need to project the solutions
p and qζ into the adequate subspace, using the convenient geometry defined by the
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inner product (3.1b). For simplicity, from now on it will be assumed that ζ > 0.
Consider the subspaces

H
def
= {κ ∈ V : ∂κ = 0 on (0, ζ)} , (3.3a)

H⊥
def
= {π ∈ V : 〈π, κ〉V = 0 for all κ ∈ H} . (3.3b)

Next, we characterize the structure of H⊥.

Lemma 3.1. Let H⊥ and H defined in (3.3). Then

H⊥ = {π ∈ V : π = 0 on (−1, 0), ∂π = 0 on (ζ, 1)} . (3.4)

Proof. It is direct to see that if π ∈ V is such that π = 0 in (−1, 0) and ∂π = 0 in (ζ, 1)

then π ∈ H⊥. For the other inclusion take ρ ∈ C∞0 (−1, 0) such that
∫ 0

−1
ρ dx = 1 and

extend it by zero to the whole domain (−1, 1). Choose any φ ∈ C∞0 (−1, 0), extend
it by zero to (−1, 1) and build the auxiliary function

Φ(x)
def
=

x∫

−1

φ(t) d t1(−1,0) (x)−
0∫

−1

φ(y) dy

x∫

−1

ρ(t) d t1(−1,0) (x).

It is easy to see that Φ ∈ H. Now take any π ∈ H⊥, then

0 = 〈π, Φ〉
V

=

0∫

−1

∂π ∂Φ =

0∫

−1

∂π (x)


φ (x)−




0∫

−1

φ(y) dy


 ρ(x)


 dx

=

0∫

−1

∂π (x)φ (x) dx−
0∫

−1

φ(y) dy

0∫

−1

∂π (x) ρ(x) dx,

i.e.,
0∫

−1

∂π (x)φ (x) dx =

0∫

−1

φ(y) dy

0∫

−1

∂π (x) ρ(x) dx

for all φ ∈ C∞0 (−1, 0). Therefore, we conclude ∂π must be constant in (−1, 0). Using
an analogous construction we also conclude ∂π must be constant in (ζ, 1). Now we
prove that such constants must be zero. Consider any κ ∈ H, then we have

0 = 〈π, κ〉
V

=

0∫

−1

∂π ∂κ+

1∫

ζ

∂π ∂κ = ∂π(−1)

0∫

−1

∂κ+ ∂π(1)

1∫

ζ

∂κ

= ∂π(−1) (κ (0)− κ (−1)) + ∂π(1) (κ (1)− κ (ζ)) .

Since κ ∈ H ⊂ V , it holds κ (−1) = 0 and the above expression writes

∂ π(−1)κ (0) + ∂ π(1) (κ (1)− κ (ζ)) = 0. (3.5)
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Due to ∂κ = 0 on (0, ζ), the function κ must be constant on this interval, therefore
κ (0) = κ (ζ). Recalling that the above holds for any κ ∈ H, choose a test function
such that κ (0) = κ (ζ) = 0 and κ(1) 6= 0, then (3.5) reduces to ∂π(1)κ (1) = 0
and we conclude ∂π(1) = 0. Hence, (3.5) reduces to ∂π(−1)κ(0) = 0. Since κ ∈ H
is arbitrary, we know that κ(0) need not be zero for all κ ∈ H, then we conclude
∂π(−1) = 0. Therefore, π must be constant on the intervals (−1, 0) and (ζ, 1).
Finally, the fact that π ∈ H ⊥ ⊂ V yields π(−1) = 0; this implies π = 0 on (−1, 0)
which completes the proof.

Now we present the characterization of the orthogonal projections onto the sub-
spaces H and H⊥.

Theorem 3.2. Let H,H⊥ be the orthogonal complementary subspaces of V defined in
(3.3). Denote by PH and PH⊥ the orthogonal projections onto H and H⊥, respectively.
Then, for any r ∈ V , it holds that

PH r(x) = r(x)1[−1, 0 ](x) + r (0)1[ 0, ζ ](x) + {r(x)− [r (ζ)− r (0)]}1[ζ, 1](x), (3.6a)

PH⊥r(x) = [r(x)− r (0)]1[ 0, ζ ](x) + [r (ζ)− r (0)]1[ζ, 1](x), (3.6b)

where 1A(·) denotes the indicator function of the set A.

Proof. For any r ∈ V , it is direct to see that the function

x 7→ r(x)1[−1, 0 ](x) + r (0)1[ 0, ζ ](x) + {r(x)− [r (ζ)− r (0)]}1[ζ, 1](x)

is in H and that the map

x 7→ [r(x)− r (0)] 1[ 0, ζ ](x) + [r (ζ)− r (0)] 1[ζ, 1](x)

belongs to H⊥. Also, their sum gives r. The result follows due to the characterization
given in Lemma 3.1.

Remark 3.3. In order to better understand the nature of the orthogonal decompo-
sition we present Figure 2. An absolutely continuous function r (blue line) is decom-
posed in PH r (turquoise line) and PH⊥r = (I − PH)r (red line). Also, the domains
Ω1,Ω2 and Ωζ1,Ω

ζ
2 are depicted.

3.2. THE PROBLEMS RESTRICTED TO H

Test the problem (3.2a) with a function κ ∈ H, this gives

0∫

−1

∂p∂κ+
1

ε

1∫

ζ

∂p∂κ =

1∫

−1

F κ+ f (0)κ (0) .

Now decompose p in PHp and PH⊥p using (3.6a) and (3.6b), we get

0∫

−1

∂ (PH p) ∂κ+
1

ε

1∫

ζ

∂ (PH p) ∂κ =

0∫

−1

F κ+

1∫

ζ

F κ+




ζ∫

0

F + f (0)


κ (0) .
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ζ

Ω1 Ω2

ζ

ζ

1 1−ζ

r

P H r

(I−P H )r

ζ

1

1

1

0

0

0

−1

−1

−1

Ω1
ζ Ω2

ζ

Fig. 2. Orthogonal decomposition

Here, the last equality used the fact that κ is constant in (0, ζ) for all κ ∈ H. We
write the statement as

PHp ∈ H :

0∫

−1

∂ (PH p) ∂κ+
1

ε

1∫

ζ

∂ (PH p) ∂κ

=

0∫

−1

F κ+

1∫

ζ

F κ+




ζ∫

0

F + f (0)


κ (0) for all κ ∈ H.

(3.7)

On the other hand, consider the problem

σ ∈ H :

0∫

−1

∂σ ∂κ+
1

ε

1∫

ζ

∂σ ∂κ

=

0∫

−1

F κ+

1∫

ζ

F κ+




ζ∫

0

F + f (0)


κ (0) for all κ ∈ H.

(3.8)

The bilinear the form A (π, κ)
def
=
∫ 0

−1
∂ π ∂κ+ 1

ε

∫ 1

ζ
∂π ∂κ is H-elliptic and continu-

ous, therefore the problem (3.8) is well-posed and we conclude that PHp is the unique
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solution of (3.8). Repeating the same procedure on the perturbed problem (3.2b) we
conclude PHq is the unique solution to the well-posed variational problem

PHq ∈ H :

0∫

−1

∂ (PH q) ∂κ+
1

ε

1∫

ζ

∂ (PH q) ∂κ

=

0∫

−1

F κdx+

1∫

ζ

F κ+




ζ∫

0

F + f (ζ)


κ (ζ) for all κ ∈ H.

(3.9)

3.3. THE PROBLEMS RESTRICTED TO H⊥

We repeat the same strategy of the previous section and get

PH⊥p ∈ H⊥ :
1

ε

ζ∫

0

∂ (PH⊥ p) ∂κ =

ζ∫

0

F κ+

1∫

ζ

F κ (ζ) for all κ ∈ H⊥. (3.10)

This is the weak solution of following strong problem

−∂ 1

ε
∂PH⊥p = F in (0, ζ) ,

PH⊥p = 0 in [−1, 0) ,

PH⊥p = constant in (ζ, 1) ,

1

ε
∂PH⊥p

(
ζ−
)

=

1∫

ζ

F,

(3.11)

where ∂PH⊥p (ζ−) = limt→ ζ− ∂PH⊥p(t). In the same fashion

PH⊥q ∈ H⊥ :

ζ∫

0

∂ (PH⊥q) ∂κ =

ζ∫

0

F κ+




1∫

ζ

F + f (ζ)


κ(ζ) for all κ ∈ H⊥,

(3.12)
where the simplification on the term of the right hand side has been made, since
κ(x) = κ (ζ) for x ∈ (ζ, 1). Thus PH⊥q is the solution to the strong problem

−∂ ∂PH⊥q = F in (0, ζ) ,

PH⊥q = 0 in [−1, 0) ,

PH⊥q = constant in (ζ, 1) ,

∂PH⊥q
(
ζ−
)

=

1∫

ζ

F + f (ζ) .

(3.13)
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3.4. ESTIMATES FOR THE H PROJECTIONS

Test (3.7) and (3.9) with PHp− PHq and subtract the result to get

0∫

−1

∂(PHp− PHq)∂(PHp− PHq) +
1

ε

1∫

ζ

∂(PHp− PH q)∂(PHp− PHq)

= f (0) [PHp(0)− PHq(0)]− f (ζ) [PHp(ζ)− PHq(ζ)]

= [f (0)− f (ζ)] [PHp(0)− PHq(0)] .

The last equality holds true, since κ (0) = κ (ζ) for all κ ∈ H. Since |r(x)| ≤√
2 ‖∂r‖0,(−1,1) for all r ∈ V , the expression above can be estimated by

‖PHp− PH q‖V ≤ C |f (0)− f(ζ)|. (3.14)

3.5. ESTIMATES FOR THE H⊥ PROJECTIONS

Since (3.11) and (3.13) are both ordinary differential equations, the exact solutions
can be found. These are given by

PH⊥p(x) = −ε
x∫

0

t∫

0

F (s) ds dt1[0, ζ ](x)

+ ε x

1∫

0

F 1[0, ζ ](x)− ε ζ




ζ∫

0

t∫

0

F (s) ds dt−
1∫

0

F


1[ζ, 1](x),

(3.15)

PH⊥q(x) = −
x∫

0

t∫

0

F (s) ds dt1[0, ζ ](x) +




1∫

0

F + f(ζ)


x1[0, ζ ](x)

−





ζ∫

0

t∫

0

F (s) ds dt−




1∫

0

F + f(ζ)


 ζ



1[ζ, 1](x).

(3.16)

We estimate the norm of the difference using the exact expressions (3.15) and (3.16).
When computing the L 2-norm of the difference of derivatives we get

‖PH⊥p− PH⊥q‖V = ‖∂PH⊥p− ∂PH⊥q‖L2(0,ζ)

≤ (1− ε)
∥∥∥∥∥

(·)∫

0

F (t) dt1[0, ζ ](·)
∥∥∥∥∥
L2(0, ζ)

+
√
ζ

[
(1− ε)

1∫

0

F (t) dt+ f(ζ)

]

≤ ζ(1− ε)√
2
‖F‖L2(0, ζ) + ζ

∣∣∣∣∣∣
f(ζ) + (1− ε)

1∫

0

F

∣∣∣∣∣∣
.
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Then we conclude that

‖PH⊥p− PH⊥q‖V ≤ C ζ {‖F‖L2(−1, 1) + |f(ζ)|}, (3.17)

where C > 0 is an adequate constant.

3.6. GLOBAL ESTIMATE OF THE PERTURBATION

For the global estimate of the difference recall ‖y‖2 ≤ ‖y‖1 for all y ∈ R2, and
combine the estimates (3.14), (3.17) this gives

‖ p− q‖V = {‖PH(p− q)‖2V + ‖PH⊥(p− q)‖2V }
1
2

≤ ‖PHp− PHq‖V + ‖PH⊥p− PH⊥q‖V
≤
√

2 |f(0)− f(ζ)|+ C ζ {‖F‖L 2(−1,1) + |f(ζ)|}.
(3.18)

In order to have continuous dependence of the solutions with respect to perturbations
of the interface, it is direct to see that the finiteness of ‖F‖

L 2(−1, 1)
is necessary, and

that conditions on the forcing term f behavior need to be stated. In the last line of
inequality (3.18), the third summand needs f to be bounded in a neighborhood [0, δ)
while the first summand demands it to be right continuous in a neighborhood [0, δ)
for some δ > 0. Recalling Hdiv(0, δ) = H1(δ) in one dimension, the hypothesis that
f = ∂Φ for some Φ ∈ Hdiv(0, δ) assumed in Section 2.3 is sufficient to satisfy these
conditions, however, it is not necessary.

Finally, a repetition of the same procedure for perturbations to the left, i.e., when
ζ < 0 yields

‖ p− q‖
V
≤
√

2 |f(0)− f(ζ)|+ C |ζ|{‖F‖
L 2(−1, 1)

+ |f(0)|}. (3.19)

The section is summarized in the following result.

Theorem 3.4. Let F ∈ L2(−1, 1) and f ∈ C(−δ, δ) for some δ > 0, then

‖p− qζ‖V −−−→
ζ→0

0, (3.20)

i.e., the sequence of perturbed solutions {qζ} converge strongly to the original one.

Proof. The estimate (3.19) together with the hypotheses on the forcing terms yield
the desired results.

Remark 3.5. It is important to stress that the successful analysis in the one dimen-
sional case, heavily relies on the dimension itself. The characterization of the right
space H and its orthogonal projections can not be done in a multi dimensional setting,
even in a very simple geometric domain such as the unit ball or the unit square. Also,
the solutions provided by equations (3.15), (3.16) are possible only due to the one
dimensional framework.

Remark 3.6. The estimates (3.18) and (3.19) heavily depend on the pointwise be-
havior of f , e.g. if f(x) ≡ C xs for s > 0 very small, the rate of convergence is very
slow. They also reveal the nonlinear dependence of the solution q with respect to ζ.
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4. A SIMPLE GEOMETRY IN MULTIPLE DIMENSIONAL SETTING

In this section we choose the simplest possible geometry in multiple dimensions,
in order to illustrate the nonlinearities that the phenomenon of interface geomet-
ric perturbation involves. Let Γ ⊆ RN−1 be open connected, Ω1 = Γ × (0, 1) and
Ω2 = Γ × (−1, 0), i.e., the domain on the right hand side of Figure 3. Also assume
that the perturbation ζ is piecewise C1(Γ). We exploit the geometry defining the
fractional bijective maps Λi : Ωζi → Ωi for i = 1, 2 as follows:

Λi(X̃, XN)
def
=

(
X̃,

XN − ζ(X̃)

1− (−1)iζ(X̃)

)
. (4.1a)

Also define

Λ(X)
def
=
∑

i=1,2

Λi(X)1Ωi(X). (4.1b)

Now set the new variables

z
def
= Λ(X̃, XN) · êN , (4.2)

x̃
def
= Λ(X̃, XN)−

(
Λ(X̃, XN) · êN

)
êN . (4.3)

Γ

Ω2
ζ

Ω1
ζ

Γζ

Ω1

Ω2

Λ2

ζ +1

1−ζ

1

1
Λ1

Fig. 3. Flattening of the interface
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4.1. CHANGES ON GRADIENT STRUCTURE

For the maps Λi denote by Λ′i its derivative or Jacobian matrix, then for i = 1, 2 holds

Λ′i =

[
I 0

(1− (−1)iz)∇̃T
ζ 1− (−1)iζ

]
. (4.4a)

Since ‖ζ‖C(Γ) < 1 for functions belonging to T (Γ,Ω) (defined in equation (2.1)), the
absolute value of the determinant of the Jacobian matrix is given by

|det (Λ′i)| =
∣∣1− (−1)iζ(x̃ )

∣∣ = 1− (−1)iζ(x̃ ). (4.4b)

For a scalar function we observe that whenever X ∈ Ωζi the gradient has the following
structure:





∇̃X
∂

∂XN





=




I −(−1)i
z − (−1)i

1− (−1)iζ
∇̃ζ

0T
1

1− (−1)iζ








∇̃x
∂

∂z




, (4.5a)

in matrix notation

∇X = Aζi ∇x for allX ∈ Ωζi and i = 1, 2. (4.5b)

4.2. FRACTIONAL MAPPING AND THE H1(Ω) SPACE

From now on, we endow the set T (Ω,Γ) with the norm W 1,∞(Γ), i.e., the sum of
the essential suprema for the function and its gradient. Define the following change
of variable.

Definition 4.1. For each element r ∈ H1(Ω), we define the fractional mapping op-
erator by

T r
def
=
∑

i=1,2

(
r ◦ Λ−1

i

)
1Ωi . (4.6)

Lemma 4.2. Let r ∈ H1(Ω). Then for each 1 ≤ ` ≤ N holds

∂

∂ x`
Tr =

∑

i=1,2

∂

∂ x`

(
r ◦ Λ−1

i

)
1Ωi , (4.7)

i.e., the weak derivative does not have pulses/jumps on lower dimensional manifolds.

Proof. Let ϕ ∈ C∞0 (Ω). Then
〈 ∂

∂ x`
Tr, ϕ

〉
D′(Ω),D(Ω)

= −
∫

Ω

Tr
∂ ϕ

∂ x`
= −

∑

i=1,2

∫

Ωi

r ◦ Λ−1
i

∂ ϕ

∂ x`

=
∑

i=1,2

∫

Ωi

∂

∂ x`

(
r ◦ Λ−1

i

)
ϕ−

∑

i=1,2

∫

∂Ωi

(
r ◦ Λ−1

i

)
ϕ (ν̂i · ê`) dS.

(4.8)
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We focus on the last two summands. Since ϕ = 0 on ∂Ω, this implies

−
∑

i=1,2

∫

∂Ωi

(
r ◦ Λ−1

i

)
ϕ (ν̂i · ê`) dS

= −
∫

Γ

{
(r ◦ Λ−1

1 )ϕ (ν̂1 · ê`) +
(
r ◦ Λ−1

2

)
ϕ (ν̂2 · ê`)

}
dS = 0.

The last equality holds since ν̂1 = −ν̂2 and Λ−1
1 = Λ−1

2 on Γ. Combining this fact
with (4.8), we conclude (4.7).

Theorem 4.3. The map T is an isomorphism from H1(Ω) onto itself.

Proof. Since the application Λ is a bijection from Ω into itself the map T is clearly
bijective and linear. For the calculation of the norms we use the change of variables
theorem ∫

Ωi

|r ◦ Λ−1
i |2 =

∫

Ωζi

|r|2 |det (Λ′i)| ≤ 2

∫

Ωζi

|r|2, i = 1, 2,

where the last inequality holds due to (4.4b). Equivalently, ‖Tr‖20,Ωi ≤ 2 ‖r‖2
0,Ωζi

, i.e.,

T is a bounded operator in L2(Ω). For the derivative first consider u ∈ C 1(Ω) and
take ` ∈ {1, . . . , N − 1}. For the vector function Λ−1

i : Ωi → Ω ζ
i denote by Λ−1

i,k its
k-th component function, thus

∫

Ωi

∣∣∣∣
∂

∂ x`
(u ◦ Λ−1

i )

∣∣∣∣
2

=

∫

Ωζi

∣∣∣∣∣
N∑

k= 1

∂u

∂ xk

∂Λ−1
i,k

∂ x`

∣∣∣∣∣

2

|det (Λ′i)|

=

∫

Ωζi

∣∣∣∣
∂u

∂ x`
+
∂u

∂ z

[
1 + (−1)iz

] ∂ζ
∂ x`

∣∣∣∣
2

|det (Λ′i)|

≤ 2

∫

Ωζi

∣∣∣∣
∂u

∂ x`

∣∣∣∣
2

+ 4

∫

Ωζi

∣∣∣∣
∂u

∂ z

∣∣∣∣
2 ∣∣∣∣

∂ζ

∂ x`

∣∣∣∣
2

≤ max {2, 4 ‖ζ‖ 2
W1,∞(Γ)

}
∫

Ωζi

|∇u|2 .

For the derivative with respect to z we get

∫

Ωi

∣∣∣∣
∂

∂ z
(u ◦ Λ−1

i )

∣∣∣∣
2

=

∫

Ωζi

∣∣∣∣∣
N∑

k= 1

∂u

∂ xk

∂Λ−1
i,k

∂z

∣∣∣∣∣

2

|det (Λ′i)|

=

∫

Ωζi

∣∣∣∣
∂u

∂z

[
1 + (−1)iζ

]∣∣∣∣
2

|det (Λ′i)| 2
∫

Ωζi

|∇u|2 .
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Define
Cζ

def
=
√

max {2, 4 ‖ζ‖ 2
W1,∞(Γ)

}. (4.9)

Combining both previous inequalities, it follows that

‖∇(Tu)‖ 2
0,Ωi ≤ C 2

ζ ‖∇u‖ 2
0,Ωζi

for all u ∈ C 1(Ω),

for i = 1, 2. Therefore,

‖∇(Tu)‖0,Ω ≤ Cζ ‖∇u‖0,Ω for all u ∈ C 1(Ω).

The inequality above extends to the whole spaceH1(Ω) by density of C 1(Ω) inH1(Ω).
Finally, combining the first and second parts we have

‖T r ‖1,Ω ≤ Cζ ‖ r ‖1,Ω for all r ∈ H 1(Ω), (4.10)

i.e., T is a bounded operator on H1(Ω).

Corollary 4.4. The map T is an isomorphism from V onto itself.

Proof. Observe that Λ−1
1 |∂Ω1−Γ = I |∂Ω1−Γ, then Tr = 0 on ∂Ω1 − Γ, i.e., T is a

bijection from V into itself and due to previous theorem the result follows.

4.3. THE FRACTIONAL MAPPING OPERATOR ON T (Ω,Γ)

Consider the application T : T (Γ,Ω) → L(H1(Ω)), where ζ 7→ T (ζ) is defined by
equation (4.6). Since T (Γ,Ω) is not a linear space, only a convex set, T can not
be linear; however T does not respect convex combinations either. Therefore, the
nonlinearity of T does not lie only on its domain of definition but also on its algebraic
structure. Clearly, T (0) = I. We will show that T is continuous at 0 in the pointwise
topology.

Lemma 4.5. Let {ζn} ⊆ T (Γ,Ω) be bounded inW 1,∞(Γ) and such that ‖ζn‖C(Γ) → 0,
then

‖T (ζn)u− u‖H1(Ω) → 0 for all u ∈ C1(Ω).

Proof. First notice that for i = 1, 2

Λ−1
i (ζn)(X̃, XN) = (x̃, z(1− (−1)i)ζn(x̃) + ζn(x̃)).

Then, the uniform convergence ‖ζn‖C(Γ) → 0 implies

‖Λ−1
1 (ζn)1Ω1

+ I1Γ + Λ−1
2 (ζn)1Ω2

− I‖C(Ω) −−−−→
n→∞

0. (4.11)

Here I 1Γ has to be introduced for the convergence in the space of continuous func-
tions. Also recall the fact that Λ−1

1 (ζ)|Γ = Λ−1
2 (ζ)|Γ = I|Γ for all ζ ∈ T (Γ,Ω).

Take u ∈ C1(Ω) and x ∈ Ω fixed then, due to the mean value theorem in multiple
dimensions, we have

|T (ζn)u(x)− u(x)| = |u ◦ Λ−1
i (ζn)(x)− u(x)| ≤ |∇u(ξ)| |Λ−1

i (ζn)(x)− x|,
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where ξ lies in the segment uniting x and Λ−1
i (ζn)(x). Thus

∫

Ωi

|T (ζn)u− u| 2 ≤ ‖u ‖2
H1(Ω)

‖Λ−1
i (ζn)− I‖2C(Ωi)

for i = 1, 2. (4.12)

Due to (4.11) we conclude
‖T (ζn)u− u‖0,Ω → 0. (4.13)

For theH1(Ω)-convergence, first notice that due to the inequality (4.10) and definition
(4.9) it follows that

‖T (ζn)u‖1,Ω ≤ sup
n∈N

√
max{2, 4‖ζn‖2W1,∞(Ω)

} ‖u‖1,Ω, (4.14)

where the supremum is finite because of the boundedness of {ζn} in W 1,∞(Γ). Then
the sequence {T (ζn)u} has a weakly convergent subsequence in H1(Ω) and due to
(4.13) the weak limit must be u. Moreover, the Rellich-Kondrachov compactness the-
orem implies that the whole sequence converges weakly to the same limit u.

Next we prove that theH1(Ω)-norms converge. The strong convergence in L2(Ω) is
given by the Rellich-Kondrachov theorem, therefore we focus only on the derivatives.
For any 1 ≤ ` ≤ N − 1, we have

∫

Ωi

∣∣∣∣
∂

∂ x`

[
u ◦ Λ−1

i (ζn)
]∣∣∣∣

2

=

∫

Ωζni

|∂`u+ ∂zu(1 + (−1)iz)∂`ζn|2|det Λ′i(ζn)|

=

∫

Ωζni

|∂`u+ ∂zu(1 + (−1)iz)∂`ζn|2|det Λ′i(ζn)|

=

∫

Ωζni

|∂`u+ ∂zu(1 + (−1)iz)∂`ζn|2(1− (−1)iζn).

On one hand, it is clear that the integrand converges to
∣∣∣ ∂ u∂ x`

∣∣∣
2

1Ωi , on the other hand,
we have the estimate

∣∣∣∂`u+ ∂zu(1 + (−1)iz)∂`ζn|2(1− (−1)iζn)1Ωζni

∣∣∣
≤ 2 {|∂`u|2 + |1 + (−1)iz||∂`ζn|2|∂zu|2} 2

≤ 4 {|∂` u|2 + 2 ‖ζn‖2W1,∞(Γ)
|∂z u|2}

≤ 4 max{1 + 2 sup
n∈N
‖ζn‖2W1,∞(Γ)

} |∇u |2 ∈ L1(Ω).

Thus, Lebesgue’s dominated convergence theorem yields
∥∥∥∥
∂

∂ x`
(T (ζn)u)

∥∥∥∥
2

0,Ωi

−−−−→
n→∞

∥∥∥∥
∂u

∂ x`

∥∥∥∥
2

0,Ωi

, 1 ≤ ` ≤ N − 1, i = 1, 2. (4.15)
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For the derivative with respect to z we get
∫

Ωi

∣∣∣∣
∂

∂ z

[
u ◦ Λ−1

i (ζn)
]∣∣∣∣

2

=

∫

Ωζni

∣∣∣∣
∂u

∂z

[
1 + (−1)iζn

]∣∣∣∣
2

|det (Λ′i(ζn))|

=

∫

Ω

∣∣∣∣
∂u

∂z

∣∣∣∣
2 [

1 + (−1)iζn
]3
1Ωζni

.

Again, the integrand converges to |∂u∂z |2 1Ωi and it is bounded by 2 |∂u∂z | 2 which is an
element of L1(Ω). Hence, the Lebesgue dominated convergence theorem yields

∥∥∥∥
∂

∂z
(T (ζn)u)

∥∥∥∥
2

0,Ωi

−−−−→
n→∞

∥∥∥∥
∂ u

∂z

∥∥∥∥
2

0,Ωi

for i = 1, 2. (4.16)

The equations (4.15) and (4.16) give the convergence of the L2(Ω)-norms of the gra-
dients ‖∇T (ζn)u‖0,Ω → ‖∇u‖0,Ω and then ‖T (ζn)u‖1,Ω → ‖u‖1,Ω. This fact together
with the weak convergence in H1(Ω) imply ‖T (ζn)u− u‖1,Ω → 0.

Theorem 4.6. Let {ζn} ⊆ T (Γ,Ω) be bounded in W 1,∞(Γ) such that ‖ζn‖C(Γ) → 0.
Then

‖T (ζn) r − r‖
H1(Ω)

→ 0 for all r ∈ H1(Ω).

Hence, T (ζn) converges to the identity I in the strong operator topology.

Proof. We use the standard density argument. Let r ∈ H1(Ω), take {uj} ⊆ C 1(Ω)
such that ‖uj − r‖1,Ω → 0. Recall Definition 4.9 and inequality (4.10), then

‖T (ζn) r − r‖H1(Ω) ≤ ‖T (ζn) r − T (ζn)uj‖H1(Ω)

+ ‖T (ζn)uj − uj‖H1(Ω) + ‖uj − r‖H1(Ω)

≤ (1 + ‖T (ζn)‖)‖uj − r‖H1(Ω) + ‖T (ζn)uj − uj‖H1(Ω)

≤ (1 + sup
k∈N

√
max {2, 4 ‖ζk‖W1,∞(Γ)}) ‖uj − r‖H1(Ω)

+ ‖T (ζn)uj − uj‖H1(Ω).

Fix j ∈ N such that the first summand of the right hand side is less than ε
2 . Due to

Lemma 4.5 there exists N ∈ N such that n ≥ N , implies that the second summand
on the right hand side of the expression above is less than ε

2 . This completes the
proof.

Corollary 4.7. Let {ζn} ⊆ T (Γ,Ω) be bounded in W 1,∞(Γ) and such that
‖ζn‖C(Γ) → 0, then ∥∥T −1(ζn) r − r

∥∥
H1(Ω)

−−−−→
n→∞

0,

i.e., the sequence of inverse operators converge.

Proof. Repeating the techniques exposed in Lemma 4.5 and in Theorem 4.6, applied
to the fractional bijective maps {Λi(ζn)} defined in (4.1a), the result follows.
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Remark 4.8. Using Theorem 4.6 it can be proved that ‖T (ζn)−  ‖L(C 1(Ω), L2(Ω))
→ 0

as ‖ζn‖C(Γ) → 0 if {ζn} is bounded in W 1,∞(Γ). Here  : C1(Ω) ↪→ L2(Ω) is the
embedding operator (ϕ)

def
= ϕ and T (ζn) is regarded as an operator from C 1(Ω)

to L2(Ω). Also, using the same technique in obtaining the estimate (4.12) we can
show ‖T (ζn)−  ‖L(C2(Ω), H1(Ω))

→ 0 with  : C2(Ω) ↪→ H1(Ω), i.e., in order to get
convergence in the norm of the operators, higher degrees of regularity are needed.

4.4. THE FLATTENED PROBLEM

Consider the problem (2.8b) subject to the changes of variable described above. In-
troducing (4.4b) and (4.5) in each summand of the left hand side in (2.8b), we have
∫

Ωζi

∇X q ·∇X r =

∫

Ωi

∇X Tq ·∇XTr |det Λ′i| =

∫

Ωi

(Aζi )
TAζi ∇xTq ·∇xTr (1− (−1)iζ),

where

(Aζi )
TAζi =




(1− (−1)iζ)I (−1)i(z − (−1)i)∇̃ζ

(−1)i(z − (−1)i)∇̃T
ζ
|(z − (−1)i)∇ζ|2 + 1

1− (−1)iζ


 . (4.17)

Due to Corollary 4.4, the quantifiers ∀ Tr ∈ V and ∀ r ∈ V are equivalent, therefore
we conclude that the solution q of problem (2.8b), satisfies the variational statement

q ∈ V :
∑

i=1,2

∫

Ωi

1− (−1)i ζ

ε i−1
(Aζi )

TAζi ∇Tq ·∇r

=

∫

Γ

1

|(−∇̃ζ, 1)|
(Tf) r d S +

∑

i=1,2

∫

Ωi

(1− (−1)i ζ ) (TF ) r for all r ∈ V.

(4.18)

In the first summand of the left hand side, the notation Tf stands for f◦Λ−1
1 or f◦Λ−1

2

indistinctively since Λ−1
1 = Λ−1

2 on Γ. The surface integral summand implicitly uses
the fact, that the upwards unitary vector normal to the surface Γ ζ is given by

n̂ =
(−∇̃ζ, 1)

|(−∇̃ζ, 1)|
.

Declaring % def
= Tq, the problem (4.18) is equivalent to

% ∈ V :
∑

i=1,2

∫

Ωi

1− (−1)i ζ

ε i−1
(Aζi )

TAζi ∇% ·∇r

=

∫

Γ

1

|(−∇̃ζ, 1)|
(Tf) r d S +

∑

i=1,2

∫

Ωi

(1− (−1)i ζ ) (TF ) r for all r ∈ V.

(4.19)
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Next, we focus on some properties of the involved matrices.

Lemma 4.9. For i = 1, 2 the inverse matrix of Aζi is given by

(Aζi )
−1 =

[
I (1− (−1)iz)∇̃ζ

0T 1− (−1)iζ

]
. (4.20)

The proof of Lemma 4.9 follows by a direct calculation.

Corollary 4.10. Let (x̃, z) ∈ Ωζi be fixed, with i ∈ {1, 2}. Then, the linear opera-
tor ξ 7→ (Aζi (x))−1ξ from RN into itself, endowed with the canonical inner product,
satisfies

‖(Aζi (x))−1‖L(RN ) ≤
√
N + 3 + 4 ‖ζ‖2

W1,∞(Γ)
for all x ∈ Ωζi and i ∈ {1, 2}. (4.21)

Proof. We compute the Frobenius norm of the operator adding the squared inner
product norms | · | of each column vector in (4.20). This gives

‖(Aζi (x))−1‖2L(RN )
≤ (N − 1) + (1− (−1)iz)2|∇ζ(x̃) |2 + (1− (−1)iζ)2.

Since z, ζ(x̃) ∈ [−1, 1] for all x = (x̃, z) ∈ Ω we estimate |1± z| ≤ 2 and |1± ζ| ≤ 2.
The gradient of ζ is estimated by the W 1,∞(Γ)-norm and the result follows.

Proposition 4.11. The matrices (1− (−1)iζ)(Aζi )
TAζi are uniformly coercive in RN

for i = 1, 2, i.e., there exists e(ζ) > 0 such that

e(ζ) |ξ|2 ≤ (1− (−1)iζ)(Aζi )
TAζi ξ · ξ (4.22)

for all ξ ∈ RN and each (x̃, z) ∈ Ω.

Proof. Let x ∈ Ωi be fixed and ξ ∈ RN unitary then

(1− (−1)iζ)(Aζi )
TAζi ξ · ξ = (1− (−1)iζ)Aζi ξ ·Aζi ξ

≥ (1− ‖ζ‖C(Γ))
∣∣∣Aζi ξ

∣∣∣
2

≥ (1− ‖ζ‖C(Γ)) min
|η|=1

∣∣∣Aζi η
∣∣∣
2

=
1− ‖ζ‖C(Γ)

‖(Aζi )−1‖2L(RN )

≥ 1− ‖ζ‖C(Γ)

N + 3 + 4 ‖ζ‖2
W1,∞(Γ)

,

where, the last inequality comes from Corollary 4.10. Defining

e(ζ)
def
=

1− ‖ζ‖C(Γ)

N + 3 + 4 ‖ζ‖2
W1,∞(Γ)

the statement (4.22) follows.
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Corollary 4.12. The form [ ·, ·] : V × V → R

[κ, π]
def
=

∑

i= 1, 2

∫

Ωi

1− (−1)iζ

ε i−1
(Aζi )

TAζi ∇κ ·∇π, (4.23)

defines an inner product on V which induces the same topology as the induced by the
standard inner product on H1(Ω).

Proof. The form (4.23) is well-defined since the application

(x̃, z) ∈ Ωi 7→ (1− (−1)iζ(x̃))(Aζi (x̃, z))
TAζi (x̃, z),

for i = 1, 2 is in L∞(Ωi,RN×N ). Clearly the form is bilinear and symmetric. For the
continuity we have

[κ, π] ≤ 2
ε ‖A

ζ
i ‖2∞ ‖∇κ‖0,Ω ‖∇π‖0,Ω ≤ 2

ε ‖A
ζ
i ‖2∞ ‖κ ‖1,Ω ‖π‖1,Ω

for all κ, π ∈ V . In particular [κ, κ] ≤ 2
ε ‖A

ζ
i ‖2∞ ‖κ ‖21,Ω. The homogeneous condition

of the induced norm comes from the uniform coercivity of the matrices shown in
Proposition 4.11. Hence

e(ζ)

1 + CΩ

‖κ‖21,Ω ≤ e(ζ) ‖∇κ‖ 2
0,Ω ≤ [κ, κ] for all κ ∈ V,

where CΩ is the Poincaré constant associated to the domain Ω valid for all elements of
V , given the boundary conditions. Therefore, the induced norms are equivalent.

Theorem 4.13. The problem (4.19) is well-posed.

Proof. The equivalence of the norm induced by the inner product [ ·, ·] to the standard
H1(Ω)-norm on V is shown in Corollary 4.12, therefore the well-posedness of problem
(4.19) follows from Lax-Milgram’s lemma.

4.5. GEOMETRIC PERTURBATION AND INNER PRODUCTS

This section is aimed at analyzing the highly nonlinear impact of the geometry in
terms of the inner product. Consider the bounds

‖p− qζ‖V ≤ ‖p− T−1(ζ)p ‖V + ‖T−1(ζ)p− qζ‖V . (4.24)

The first summand converges due to Theorem 4.6. For the convergence of the second
summand, due to Corollary 4.7 it is equivalent to prove

‖p− T (ζ)qζ‖V = ‖p− %ζ‖V → 0 as ‖ζ‖C(Γ) → 0 with ‖ζ‖W1,∞(Γ) bounded. (4.25)

We are to estimate the norm above by comparing the problems (2.8a) and (4.19).
In problem (4.19) the effect of the geometry on the inner product structure is fully
contained in the matrices

{(1− (−1)iζ)(Aζi )
TAζi : x ∈ Ωi}, i = 1, 2. (4.26)
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Notice that this is a family of symmetric and therefore diagonalizable matrices. How-
ever, they depend on the point x ∈ Ω and, in general, they do not commute for
x,x′ ∈ Ω different. Therefore, it can not be assured that the family (4.26) is simulta-
neously diagonalizable. Observe that the matrices (4.5a) have entries multiplied by the
factors 1

1−(−1)iζ(x̃) , for i = 1, 2 respectively. This implies that the maps induced by the
matrices are not linear with respect to the perturbation ζ. The following hypothetic
assumptions illustrate the nonlinearity of the dependence.

(i) Suppose that ζ is a piecewise linear affine function. Although ∇̃ζ is piecewise
constant, the map x 7→ (1− (−1)iζ)(Aζi )

TAζi is not piecewise constant.
(ii) Assume that the family of matrices (4.26) is diagonal. Testing the problems

(2.8a) and (4.19) with p− % and subtracting them, yields

∑

i= 1,2

∫

Ωi

∇p−∇ %

εi−1
·∇p−



µ1 . . . 0
...

...
...

0 . . . µN


∇ %

=

∫

Ω

F (p− %)−
∑

i= 1, 2

∫

Ωi

(1− (−1)i ζ)(TF )(p− %) dS

+

∫

Γ

f(p− %) dS −
∫

Γ

1

|(−∇̃ζ, 1)|
(Tf) (p− %) dS,

(4.27)

where µ1, . . . , µN are the eigenvalues. Nevertheless µj = µj(x) for 1 ≤ j ≤ N ,
i.e., they depend on the position x within the domain Ω.

We close this section reviewing the simplest possible scenario.

4.6. FRACTIONAL MAPPING OF DOMAINS
IN THE ONE DIMENSIONAL CASE

In this section we analyze the fractional mapping technique in the one dimensional
setting. For this case the problem (4.19) reduces to

1

1 + ζ

0∫

−1

∂% · ∂r +
1

ε

1

1− ζ

1∫

0

∂% · ∂r

= f(ζ) r(0) +
∑

i=1,2

(1− (−1)iζ)

(−1)i+1
2∫

(−1)i−1
2

r(x)F

(
x− ζ

1− (−1)iζ

)
dx.

(4.28)

In order to get a-priori estimates the left hand side of the problem (4.28) suggests
testing equations (3.2a) and (4.28) with the following function:
(
p− 1

1 + ζ
%
)
1(−1, 0] +

(
p− 1

1− ζ %
)
1[0, 1) = p−

{ 1

1 + ζ
%1(−1, 0] +

1

1− ζ %1[0, 1)

}
.

(4.29)
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However, the test function presented above (as the second summand in the right
hand side illustrates) is not eligible, because it does not belong to V unless ζ = 0 or
%(0) = 0. The first condition removes the perturbation leaving the original problem
(3.2a) and the second can not be assured. Any other attempt to estimate ‖p − %‖V
demands test functions equivalent to (4.29), because of the coefficients disagreement
in problems (3.2a) and (4.28). Of course, such piecewise functions are not in the test
space V due to the trace continuity requirements.

In the one dimensional case, the fractional mapping technique defines an inner
product much easier to understand than the one corresponding to the multidimen-
sional case (4.19). It is clear that the dependence of the inner product with respect
to the perturbation, is piecewise linear fractional as the map Λ : (0, 1)→ (0, 1) itself.
Additionally, direct calculations can be done to find explicitly, the dependence of the
eigenvalues associated to the problem (3.2b). This dependence also turns out to be
piecewise fractional on ζ, closely related to Λ. For a deep discussion on boundary
perturbation of the Laplace eigenvalues see [8, 9].

Finally, the question of strong convergence (4.25) can be solved using the
Rellich-Kondrachov theorem. However, this is not a constructive result and it does
not yield explicit estimates such as inequality (3.19) in Section 3.6.

5. CONCLUDING REMARKS AND DISCUSSION

The present work yields several conclusions and open questions.
(i) In Section 2.3, extra hypothesis of regularity on the forcing terms involved,

were introduced in order to conclude weak convergence in a first step, and strong
convergence in a second one. Also, for the geometric perturbations ζ ∈ T (Ω,Γ), it
is not enough to have convergence in C(Γ), there is also need for boundedness in
W 1,∞(Γ).

(ii) The conditions of convergence for the interface are acceptable in the context of
saturated porous media fluid flow. Moreover, for the modeling of saturated fluid flow
through deformable porous media in the elastic regime, these conditions are natural
because, for high gradients of deformation the elasto-plastic and plastic regimes start
taking place, see [17].

(iii) Mapping the perturbed domains with fractional applications as in Section 4,
decomposes the nonlinearity of the question in two parts: the fractional mapping
operator T : T (Ω,Γ) → L(H1(Ω)) which is clearly nonlinear, and the effect of the
geometric perturbation on the inner product that the problem (2.8b) defines on V .
The latter is reflected in the matrices (4.17) of the problem (4.19) above.

(iv) Although the operators T (ζ) converge in the strong operator topology as the
perturbations ζ ∈ T (Ω,Γ) converge, according to the hypothesis of Theorem 4.6, it
is an abstract statement. There are no explicit estimates depending on ‖ζ‖W1,∞(Γ) or
‖ζ‖C(Γ), analogous to inequality (3.19) presented in Section 3.6.

(v) The inner product, that a geometric perturbation implicitly defines on the
function space V , is the most important nonlinearity of the problem. It introduces a
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notion of orthogonality in the space which is hardly comparable with the standard
one, beyond the topological equivalence of the induced norms.

(vi) The fractional mapping technique is a much simpler approach than the local
charts strategy used in trace theorems. Its main contribution to this work, consists in
exposing the challenges of the convergence rate question, as well as the non-linearities
involved, in a much neater way than the local charts approach.

(vii) The strong convergence statements attained in Section 2.4, realizing problem
(2.8a) as the strong limit of the family of problems (2.8b), suggest numerical experi-
mentation and a-posteriori estimates as the most feasible approach to gain insight into
the convergence rate question as well as the dependence with respect to the norms
W 1,∞(Γ) and/or C(Γ) of the perturbation ζ.

(viii) The solution of the one dimensional case presented in Section 3, using or-
thogonal decompositions on carefully chosen subspaces, illustrates the complexity of
the convergence rate problem. This fact becomes even more dramatic due to the strong
dependence on the one dimensional setting.

(ix) In both settings, multi and one dimensional, the necessity of testing the varia-
tional statements with functions of the structure (4.29) (i.e., discontinuous across the
interfaces), to obtain explicit a-priori estimates of the difference p− q is self-evident.
Such functions break the linear structure of the domain V and obey to the disagree-
ment of scaling coefficients in problems (2.8a), (2.8b).

(x) Both of the classical mixed variational formulations: L2-H1 and Hdiv-L2 de-
mand coupling conditions on the function spaces, for the trace on the interfaces Γ,Γ ζ .
These conditions do not allow testing with discontinuous functions such as (4.29).
However, a mixed formulation setting L2-H1 in one region, namely Ω1 and Hdiv-L2

in the other region, as the one introduced in [16], does not require continuity of the
test functions across the interfaces. Hence, this is the formulation where convergence
rate estimates (implicit or explicit, given the nonlinearity of the problem) can most
likely be attained.
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