PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Maximum entropy generation rate in a heat exchanger at constant inlet parameters

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The main goal of the paper is to provide a condition for which a maximum entropy generation occurs in a heat exchanger at constant inlet parameters (temperatures and mass flow rates). Knowing this condition is essential during the design of the heat exchanger as it allows designers to avoid one of its most unfavourable operating conditions in terms of thermodynamics. Entropy generation resulting from the resistance of heat-transferring fluids to flow was not taken into account. Entropy generation was analysed as a function of a heat flow rate at constant parameters at the inlet of a condenser and a counter-flow double-pipe heat exchanger. The analysis showed that for the condenser the entropy generation rate increases with the increase in the heat flow rate. The maximum entropy generation rate occurs for the maximum flow rate of the heat that can be transferred according to the definition of heat transfer effectiveness. For the counter-flow heat exchanger, the entropy generation as a function of the heat flow rate reaches maximum at constant inlet parameters (temperatures and mass flow rates). It appeared that the peak entropy generation, or the largest exergy loss, occurs when the outlet temperatures of the fluids are equal. This assertion was verified against data obtained from a simulator of the counter-flow heat exchanger for two different relations between heat capacity rates.
Rocznik
Strony
79--86
Opis fizyczny
Bibliogr. 32 poz., wykr.
Twórcy
autor
  • Institute of Heat Engineering, 21/25 Nowowiejska Str., 00-665, Warsaw, Poland
autor
  • Institute of Heat Engineering, 21/25 Nowowiejska Str., 00-665, Warsaw, Poland
Bibliografia
  • 1. Cengel Y. A. (1998). Heat transfer. McGraw-Hill, New York.
  • 2. Cengel Y. A. (2012). Heat and mass transfer. McGraw-Hill, New York.
  • 3. Holman J. P. (2002). Heat transfer. McGraw-Hill, New York..
  • 4. Kostowski E. (2000). Wymiana ciepła. Wydawnictwo Politechniki Śląskiej, Gliwice. (in Polish)
  • 5. McClintock F. A. (1951). The design of heat exchangers for minimum irreversibility. Annual Meeting of the ASME, New York, USA, paper No. 5 l-A-108.
  • 6. Prigogine I. (1967). Introduction to Thermodynamics of Irreversible Processes (3rd Edition). Wiley, New York, pp. 76-77.
  • 7. Bejan A. (1977). The concept of irreversibility in heat exchanger design: counterflow heat exchangers for gas-to-gas applications. Journal of Heat Transfer, Vol. 99, No. 3, pp. 374-380.
  • 8. Bejan A. (1982). Second-law analysis in heat transfer and thermal design, Advances in Heat Transfer, Vol. 15, pp. 1-58.
  • 9. Sekulic D. P. (1986). Entropy generation in a heat exchanger. Heat Transfer Engineering, Vol. 7, pp. 83-88.
  • 10. Ogiso K. (2003). Duality of heat exchanger performance in balanced counter-flow systems, Journal of Heat Transfer, Vol. 125, No. 3, pp. 530-532.
  • 11. Xu Z., Yang S., Chen Z. (1996). A modified entropy generation number for heat exchangers. Journal of Thermal Science, Vol. 5, No. 4, pp. 257-263.
  • 12. Daxi X., Zhixin L., Zengyuan G. (1996). On effectiveness and entropy generation in heat exchange. Journal of Thermal Science, Vol. 5, No.4, pp. 248-256.
  • 13. Hesselgreaves J. E. (2000). Rationalization of second law analysis of heat exchangers. International Journal of Heat and Mass Transfer, Vol. 43, No. 22, pp. 4189-4204.
  • 14. Guo J., Xu M., Cheng L. (2009). The application of field synergy number in shell-and-tube heat exchanger optimization design. Applied Energy, Vol. 83, No. 10, pp. 2079-2087.
  • 15. Shah R. K., Skiepko T. (2004). Entropy generation extrema and their relationship with heat exchanger effectiveness–number of transfer unit behavior for complex flow arrangements. Jounal of Heat Transfer, Vol. 126, No. 6, pp. 994-1002.
  • 16. Sahiti N., Krasniqi F., Fejzullahu Xh., Bunjaku J., Muriqi A. (2008). Entropy generation minimization of a double-pipe pin fin heat exchange. Applied Thermal Engineering, Vol. 28, No. 17-18, pp. 2337-2344.
  • 17. Ordonez J., Bejan A. (2000). Entropy generation minimization in parallel-plates counterfow heat exchangers. International Journal of Energy Research, Vol. 24, No. 10, pp. 843-864.
  • 18. Mishra M., Das P. K., Sarangi S. (2009). Second law based optimisation of crossflow plate-fin heat exchanger design using genetic algorithm. Applied Thermal Engineering, Vol. 29, No. 14-15, pp. 2983-2989.
  • 19. Ogulata R. T., Doba F., Yilmaz T. (2000). Irreversibility analysis of cross flow heat exchangers. Energy Conversion and Management, Vol. 41, No. 15, pp. 1585-1599.
  • 20. Guo, J., Cheng, L., Xu, M. (2010). Multi-objective optimization of heat exchanger design by entropy generation minimization. Journal of Heat Transfer, Vol. 132, No. 8, pp. 081801-1-081801-8.
  • 21. Kolenda Z., Donizak J., Hubert J. (2004). On the minimum entropy production in steady state heat conduction processes. Energy, Vol. 29, No. 12-15, pp. 2441-2460.
  • 22. Kolenda Z. (2006). Analysis of the possibility to reduce the imperfections of the thermodynamic processes of the supply of electricity, heat and cooling in the context of sustainable development of the country. In: Exergy analysis and entropy generation minimization method (Ziębik A., Szargut J., Stanek W., Eds.). Publication of Polish Academy of Sciences.
  • 23. Szargut J. (1998). Problems of thermodynamics optimization. Archives of Thermodynamics, Vol. 19, No.3-4, pp. 85-94.
  • 24. Laskowski R. Smyk A., Rusowicz A., Grzebielec A. (2016). Determining the optimum inner Diameter of Condenser Tubes Based on Thermodynamic Objective Functions and an Economic Analysis. Entropy, Vol. 18, No. 12, pp. 444. (20 pages)
  • 25. Laskowski R., Rusowicz A., Grzebielec A. (2015). Estimation of a tube diameter in a ‘church window’ condenser based on entropy generation minimization. Archives of Thermodynamics, Vol. 36, No. 3, pp. 49-59
  • 26. Laskowski R., Rusowicz A., Grzebielec A. (2015). Minimizing the entropy increase as a tool for optimization of the inner diameter of the condenser tube. Przemysł Chemiczny, Vol. 94, No. 10, pp. 1697-1699.
  • 27. Laskowski R., Smyk A., Rusowicz A. (2016). Dobór odpowiedniej średnicy rurek skraplacza na podstawie minimum liniowego oporu cieplnego i liniowego strumienia generacji entropii. Chłodnictwo, Vol. 1, No. 9, pp. 18-21. (in Polish)
  • 28. Laskowski R., Rusowicz A., Grzebielec A., Jaworski M. (2016). Ocena konstrukcji skraplacza na podstawie minimum strumienia generacji entropii. Aparatura Badawcza i Dydaktyczna, No. 21, pp. 76-84. (in Polish)
  • 29. Mohamed H. A. (2006). Entropy generation in counter flow heat exchangers. Journal of Heat Transfer, Vol. 128, No. 1, pp. 87-92.
  • 30. Fakheri A. (2010). Second law analysis of heat exchangers. Journal of Heat Transfer, Vol. 132, No. 11, pp. 111802-1-111802-7.
  • 31. Szargut J., Petela R. (1965). Egzergia. Wydawnictwa Naukowo-Techniczne, Warszawa. (in Polish)
  • 32. Szargut J. (1998). Termodynamika (Wyd. VI). Państwowe Wydawnictwo Naukowe, Warszawa. (in Polish)
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ab7ba6da-124c-4ba6-9fc6-b25320183b00
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.