PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Electrospun carbon nanofibers (CNFs) modified with needle-like SiC nanostructures

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Electrospun carbon nanofibers (CNFs) are an excellent material which can possess a wide range of properties through controlling the parameters of the electrospinning process, as well as through thermal treatment. At the same time, CNFs are an excellent substrate for carrying out modifications, both volumetric, at the stage of precursor preparation, and surface modifications. Different methods of introducing various silicon carbide (SiC) precursors into the spinning solution enables the formation of needleshaped SiC nanostructures on the CNF surface. This work presents an attempt to obtain nanofibrous carbon materials modified in volume and on the surface with SiC precursors, along with their characteristics. The most promising method of creating needle-like SiC nanostructures on the surface of CNFs is the use of volume modification with polysiloxane and silanization of the surface of the CNFs in a organosilicon sol solution.
Rocznik
Strony
art. no. e74
Opis fizyczny
Bibliogr. 25 poz., rys., wykr.
Twórcy
  • AGH University of Krakow, Faculty of Materials Science and Ceramics, Mickiewicza 30, 30-059 Kraków, Poland
  • AGH University of Krakow, Faculty of Materials Science and Ceramics, Mickiewicza 30, 30-059 Kraków, Poland
  • AGH University of Krakow, Faculty of Materials Science and Ceramics, Mickiewicza 30, 30-059 Kraków, Poland
  • AGH University of Krakow, Faculty of Materials Science and Ceramics, Mickiewicza 30, 30-059 Kraków, Poland
Bibliografia
  • 1. Babayevska N., Przysiecka Ł., Iatsunskyi I., Nowaczyk G., Jarek M., Janiszewska E., Jurga S., 2022. ZnO size and shape effect on antibacterial activity and cytotoxicity profile. Sci. Rep., 12, 8148, 1–13. DOI: 10.1038/s41598-022-12134-3.
  • 2. Chen S., Guo Y., Chen S., Yu H., Ge Z., Zhang X., Zhang P., Tang J., 2012. Facile preparation and synergistic antibacterial effect of three-component Cu/TiO2/CS nanoparticles. J. Mater. Chem., 22, 9092–9099. DOI: 10.1039/c2jm00063f.
  • 3. Cheng C., Li X., Yu X., Wang M., Wang X., 2019. Chapter 14 – Electrospun nanofibers for water treatment, In: Ding B., Wang X., Yu J. (Eds.), Electrospinning: Nanofabrication and applications. Elsevier Inc., 419–453. DOI: 10.1016/B978-0-323- 51270-1.00014-5.
  • 4. Dai J., Sha J., Zhang Z., Shao J., Zu Y., Lei M., 2017. Catalyst- free growth of multi-shaped SiC nanofibers on carbon fibers at elevated temperatures. Ceram. Int., 43, 17057–17063. DOI: 10.1016/j.ceramint.2017.09.119.
  • 5. Faccini M., Borja G., Boerrigter M., Morillo Martín D., Martìnez Crespiera S., Vázquez-Campos S., Aubouy L., Amantia D., 2015. Electrospun carbon Nanofiber membranes for filtration of nanoparticles from water. J. Nanomater., 2015, 247471. DOI: 10.1155/2015/247471.
  • 6. Gandotra R., Chen Y.-R., Murugesan T., Chang T.-W., Chang H.-Y., Lin H.-N., 2021. Highly efficient and morphology dependent antibacterial activities of photocatalytic
  • 7. Cux O/ZnO nanocomposites. J. Alloys Compd., 873, 159769. DOI: 10.1016/j.jallcom.2021.159769.
  • 8. Kaneko T., Nemoto D., Horiguchi A., Miyakawa N., 2005. FTIR analysis of a-SiC:H films grown by plasma enhanced CVD. J. Cryst. Growth, 275, e1097–e1101. DOI: 10.1016/j.jcrysgro. 2004.11.128.
  • 9. Karbownik I., Fiedot M., Rac O., Suchorska-Woźniak P., Rybicki T., Teterycz H., 2015. Effect of doping polyacrylonitrile fibers on their structural and mechanical properties. Polymer, 75, 97–108. DOI: 10.1016/j.polymer.2015.08.015.
  • 10. Kim B.-H., Kim C.H., Yang K.S., Kim K.-Y., Lee Y.-J., 2010. SiC/SiO2 coating for improving the oxidation resistive property of carbon nanofiber. Appl. Surf. Sci., 257, 1607–1611. DOI: 10.1016/j.apsusc.2010.08.104.
  • 11. Koyanagi T., Terrani K., Harrison S., Liu J., Katoh Y., 2021. Additive manufacturing of silicon carbide for nuclear applications. J. Nucl. Mater., 543, 152577. DOI: 10.1016/j.jnucmat.2020.152577.
  • 12. Maldonado R.F., Sá-Correia I., Valvano M.A., 2016. Lipopolysac- charide modification in gram-negative bacteria during chronic infection. FEMS Microbiol. Rev., 40, 480–493. DOI: 10.1093/femsre/fuw007.
  • 13. Manea L.R., Scarlet R., Amariei N., Nechita E., Sandu I.G., 2015. Study on behaviour of polymer solutions in electrospinning technology. Rev. Chim., 66, 542–546.
  • 14. Nhut J.-M., Pesant L., Keller N., Pham-Huu C., Ledoux M.J., 2004. Pd/SiC exhaust gas catalyst for heavy-duty engines: im- provement of catalytic performances by controlling the location of the active phase on the support. Top. Catal., 30, 353–358. DOI: 10.1023/b:toca.0000029774.03973.a6.
  • 15. Pazdyk-Slaby W., Stodolak-Zych E., Zambrzycki M., Zych L., Gu- bernat M., Swietek M., Smolka W., Fraczek-Szczypta A., 2024.
  • 16. Preparation of electrospun carbon nanofibers (eCNF) modified with metal compounds with antibacterial properties. J. Environ. Chem. Eng., 12, 113185. DOI: 10.1016/j.jece.2024.113185.
  • 17. Selim M.S., Mo P.J., Hao Z., Fatthallah N.A., Chen X., 2020. Blade-like structure of graphene oxide sheets decorated with cuprous oxide and silicon carbide nanocomposites as bactericidal materials. J. Colloid Interface Sci., 578, 698–709. DOI: 10.1016/j.jcis.2020.06.058.
  • 18. Sharon M., 2021. An Introduction to carbon nanofiber. In:Sharon M., Sharon M. (Eds.), Carbon Nanofibers: Fundamentals and Applications, 2, 1–20. DOI: 10.1002/9781119769149.ch1.
  • 19. Soltani S., Khanian N., Roodbar Shojaei T., Shean Ya Choong T., Asim N. 2022. Fundamental and recent progress on the strengthening strategies for fabrication of polyacrylonitrile (PAN)-derived electrospun CNFs: precursors, spinning and col- lection, and post-treatments. J. Ind. Eng. Chem., 110, 329–344. DOI: 10.1016/j.jiec.2022.03.005.
  • 20. Stanković A., Dimitrijević S., Uskoković D., 2013. Influence of size scale and morphology on antibacterial properties of ZnO powders hydrothemally synthesized using different surface stabilizing agents. Colloids Surf., B, 102, 21–28. DOI: 10.1016/j.colsurfb.2012.07.033.
  • 21. Subhan M.A., 2020. Chapter 13 – Antibacterial property of metal oxide-based nanomaterials. In: Rajendran S., Mukherjee A., Nguyen T.A., Godugu C., Shukla R.K. (Eds.), Nanotoxicity: Prevention and antibacterial applications of nanomaterials. El- sevier, 283–300. DOI: 10.1016/B978-0-12-819943-5.00013-0.
  • 22. Szala M., Borkowski A., 2014. Toxicity assessment of SiC nanofibers and nanorods against bacteria. Ecotoxicol. Environ. Saf., 100, 287–293. DOI: 10.1016/j.ecoenv.2013.10.030.
  • 23. Tan J., Zhang J., Zhong H., Hu H., Kou X., Zhang B.-X., 2024. Organosilicon-grafted silica nanoparticles for vat photopolymerization: evolution from organic/inorganic hybrid ma- terials to ceramics. Open Ceram., 17, 100513. DOI: 10.1016/j.oceram.2023.100513.
  • 24. Xu G., Yamakami T., Yamaguchi T., Endo M., Taruta S., Kubo I., 2014. Surface modification of carbon nanofibers with SiC by heating different SiO vapor sources in argon atmosphere. J. Ceam. Soc. Jpn., 122, 822–828. DOI: 10.2109/jcersj2.122.822.
  • 25. Zhao R., Wang Y., Li X., Sun B., Li Y., Ji H., Qiu J., Wang C., 2016. Surface activated hydrothermal carbon-coated electrospun PAN fiber membrane with enhanced adsorption properties for herbicide. ACS Sustainable Chem. Eng., 4, 2584–2592. DOI: 10.1021/acssuschemeng.6b00026.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ab799a64-eef1-469b-9f93-2d9dbb470bd4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.