PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

AA5052 failure prediction of electromagnetic flanging process using a combined fracture model

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Electromagnetic forming process could significantly increase the forming limit of aluminum alloy. However, high-speed fracture prediction of aluminum alloys is a major problem in the development of electromagnetic flanging process. In this study, notched specimen tensile tests with high-speed Digital Image Correlation system were conducted under the strain rate range from 0.001 to 100 s-1. A fracture model of AA5052 alloys which combined of an uncoupled fracture model, Gissmo damage evolution model and Johnson-Cook strain rate effect was established. Electromagnetic flanging experiments were conducted to verify the failure criteria effectiveness. Results showed that failure strain was significantly influenced by strain rate under various loading path. Compared with the experiments, the percentage error of established electromagnetic flanging process FEM model was less than 4%. The fracture model established could well predict notched specimen high-speed failure, and also accurately predict sheet failure model of electromagnetic flanging experiments and, thus, verified the effectiveness of the established dynamic failure criteria in electromagnetic flanging process.
Rocznik
Strony
art. no. e84, 1--17
Opis fizyczny
Bibliogr. 24 poz., il., tab., wykr.
Twórcy
autor
  • College of Automobile and Mechanical Engineering, Changsha University of Science and Technology, Changsha, China
autor
  • State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha, China
autor
  • State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha, China
autor
  • College of Automobile and Mechanical Engineering, Changsha University of Science and Technology, Changsha, China
autor
  • State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha, China
Bibliografia
  • 1. Tisza M, Czinege I. Comparative study of the application of steels and aluminium in lightweight production of automotive parts. Int J Lightw Mater Manuf. 2018;1:229-238.
  • 2. Psyk V, Risch D, Kinsey BL, Tekkayaa AE, Kleinera M. Electromagnetic forming - a review. J Mater Process Technol. 2011;211:787-829.
  • 3. Su H, Huang L, Li J, Ma F, Huang P, Feng F. Two-step electromagnetic forming: a new forming approach to local features of large-size sheet metal parts. Int J Mach Tools Manuf. 2018;124:99-116.
  • 4. Li J, Qiu W, Huang L, Su H, Tao H, Li P. Gradient electromagnetic forming (GEMF): a new forming approach for variablediameter tubes by use of sectional coil. Int J Mach Tools Manuf. 2018;135:65-77.
  • 5. Zhang X, Zhang M, Sun L, Li C. Numerical simulation and experimental investigations on TA1 titanium alloy rivet in electromagnetic riveting. Arch Civil Mech Eng. 2018;18:887-901.
  • 6. Gronostajski Z, Pater Z, Madej L, et al. Recent development trends in metal forming. Arch Civil Mech Eng. 2019;19:898-941.
  • 7. Imbert JM, Winkler SL, Worswick MJ, Oliveira DA, Golovashchenko S. The effect of tool-sheet interaction on damage evolution in electromagnetic forming of aluminum alloy sheet. J Eng Mater Technol. 2005;127:145-153.
  • 8. Kim SB, Huh H, Bok HH, Moon MB. Forming limit diagram of auto-body steel sheets for high-speed sheet metal forming. J Mater Process Technol. 2011;211:851-862.
  • 9. Velmanirajan K, Anuradha K, Thaheer ASA, Narayanasamy R, Madhavan R, Suwas S. Experimental investigation of forming limit, void coalescence and crystallographic textures of aluminum alloy 8011 sheet annealed at various temperatures. Arch Civil Mech Eng. 2014;14:398-416.
  • 10. Mirfalahnasiri SM, Basti A, Hashemi R. Forming limit curves analysis of aluminum alloy considering the through-thickness normal stress, anisotropic yield functions and strain rate. Int J Mech Sci. 2016;117:93-101.
  • 11. Nasiri SM, Basti A, Hashemi R, Darvizeh A. Effects of normal and through-thickness shear stresses on the forming limit curves of AA3104-H19 using advanced yield criteria. Int J Mech Sci. 2018;137:15-23.
  • 12. Pham Q, Lee B, Park K, Kim Y. Influence of the post-necking prediction of hardening law on the theoretical forming limit curve of aluminium sheets. Int J Mech Sci. 2018;140:521-536.
  • 13. Li H, Fu MW, Lu J, Yang H. Ductile fracture: experiments and computations. Int J Plast. 2011;27:147-180.
  • 14. Majzoobi GH, Kashfi M, Bonora N, Iannitti G, Ruggiero A, Khademi E. Damage characterization of aluminum 2024 thin sheet for different stress triaxialities. Arch Civil Mech Eng. 2018;18:702-712.
  • 15. Johnson GR, Cook WH. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures. Eng Fract Mech. 1985;21:31-48.
  • 16. Wierzbicki T, Bao Y, Lee YW, Bai Y. Calibration and evaluation of seven fracture models. Int J Mech Sci. 2005;47:719-743.
  • 17. Liang X. Damage accumulation and fracture initiation in uncracked ductile solids subject to triaxial loading. Int J Solids Struct. 2007;44:5163-5181.
  • 18. Bai Y, Wierzbicki T. A new model of metal plasticity and fracture with pressure and Lode dependence. Int J Plast. 2008;24:1071-1096.
  • 19. Lou Y, Chen L, Clausmeyer T, Tekkaya AE, Yoon JW. Modeling of ductile fracture from shear to balanced biaxial tension for sheet metals. Int J Sol Struct. 2017;112:169-184.
  • 20. Andrade FXC, Feucht M, Haufe A, Neukamm F. An incremental stress state dependent damage model for ductile failure prediction. Int J Fract. 2016;200:127-150.
  • 21. Cronin DS, Bui K, Kaufmann C, McIntosh G, Berstad T, Cronin D. Implementation and validation of the Johnson-Holmquist ceramic material model in LS-Dyna. In: 4th European LS-dyna users conference. 2003.
  • 22. Andrade F, Feucht M, Haufe A. On the prediction of material failure in LS-DYNA: A comparison between GISSMO and DIEM. In: Proceedings of the 13th International LS-DYNA Users Conference, Detroit, USA. 2014.
  • 23. Liang B, Zhao Y, Zhao Q, Fan T, Li Y. On the prediction of failure in 6016 aluminum alloy sheet by gissmo damage model. Chin J Mech Eng. 2019;55:53-62.
  • 24. Deng H, Yang S, Li G, Zhang X, Cui J. Novel method for testing the high strain rate tensile behavior of aluminum alloys. J Mat Process Technol. 2020;280:116601.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ab785da0-ede2-49ed-aeb5-3f6626a9c6da
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.