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ABSTRACT: Solutions of such navigational problems as an orthodromic navigation (courses, distances and
intermediate points), maximum latitude and a composite navigation with limited latitude as well as, for
comparison, a loxodromic navigation (courses, distances) without any simplifications for a sphere, by an
application of solutions of the inverse geodetic problem are presented. An exemplary rigorous, rapid, non-
iterative solution of the inverse geodetic problem according to Sodano, for any length of geodesic, is attached.

1 INTRODUCTION

The traditional method of computing the shortest
path between two points on the Earth known as Great
Circle method approximate the Earth as the sphere.

These simplifications have been necessary to re-
duce the number of calculations and justified in times
of manual mechanical or electronic calculators, but
are completely unnecessary and unjustified in times
of computer calculations. Therefore we will directly
apply the solution of the problem known in geodesy
as the inverse geodetic problem.

In the solution of the inverse geodetic problem
(Fig. 1) from the given coordinates ¢1, A1 at the start
of geodesic P1 and coordinates ¢z, A2 of the endpoint
P2 are calculated the length S, the azimuth a1 and the
reversed azimuth a1, on any reference ellipsoid.

E. M. Sodano (Sodano 1958, 1965, 1967) from
Helmert's classical iterative formulas derived a
rigorous non-iterative procedure, for any length of
geodesic and for any required accuracy, which is
attached (as exemplary) in Appendix A. This
procedure (or any other solution of the inverse

geodetic problem) will be used in this paper in the
formal notation

S=1IGP (1, A1, @2, A2) 1)

a2, o211 =IGP (1, A1, 2, A2) (2)

Figure 1. The direct and the inverse geodetic problem.
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2 ORTHODROMIC DISTANCE AND COURSES

We define the orthodrome as the shortest path on any
surface and not only the Great Circle distance on the
sphere as commonly is used.

The geodesic is (locally - not long way round) the
shortest path between two points on an ellipsoid of
revolution. Therefore we can obtain orthodromic
distance and courses directly from Equations 1 and 2
with navigational substitutions

Cgs = (X1-2 (3)

Cge = 21 - 180° (4)

where Cgs= the course over ground at the start of the
orthodrome; and Cg. = the course over ground at the
end of the orthodrome.

East longitudes and north latitudes are considered
positive and west longitudes and south latitudes are
considered negative.

3 ACCURACY OF THE SOLUTION OF THE
INVERSE GEODETIC PROBLEM

“The accuracy of geodetic distances computed
through the €2, e?, e® order for very long geodesics is
within a few meters, centimeters and tenth of milli-
meters respectively. Azimuths are good to tenth,
thousandths and hundreds thousandths of a second.
Further improvement of results occurs for shorter
lines” (Sodano 1958).

This accuracy can be easy tested in the case of
equatorial orthodrome. Substitution @1 = @2 = 0 to
Equations A 2 to A 10 yields

S=b,(1+f+f*)L| ©)

whereas the correct value is given by the equation

b,
1-f

S =a,lLj=" ©

therefore the relative error is

ps- 58
S

~-38-10" ~-38cm /10000 km @)

4 ERRORS OF CALCULATIONS ON THE SPHERE

According to Euler’s theorem for an ellipsoid of
revolution the radius of curvature in meridian is the
smallest and the radius of curvature in the prime
vertical is the largest at a point. These radii are given
respectively by the equations
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The widest span has the radius of curvature in
meridian since

b2
=Ry (9=07="""

0

R (10)

M min

2
o o a
RMmax ZRM((P:90 )ZRN((p=9O ):bi

0

(11)

The substitute radius of curvature of any
orthodrome will be within these limits. The minimum
absolute value of deviation gives an assumption that
the substitute radius of sphere is given by the
equation (for a global range of latitudes)

R

R, = +R

2

M max M min

(12)

Then the maximal relative error of calculation on
such a sphere, instead of an ellipsoid, gives the
equation

+ - .
ASg = _;R R vtmin) ~+0.5% =~ 50 km /10 000 km

+R

M max

M max M min

(13)

These results are similar to obtained by Earle
(2006) with much more complicated methods.

5 INTERMEDIATE POINTS ON THE
ORTHODROME

For calculating intermediate points on the
orthodrome we can use, as exemplary, the solution of
the direct geodetic problem presented in Lenart
(2011), also according to Sodano, having similar
accuracy.

In the solution of the direct geodetic problem
(Fig. 1) from the given coordinates ¢1, A1 and azimuth
auz at the start of geodesic P1 and their length S are
calculated coordinates 2, A2 of the endpoint P2 and
the reversed azimuth a1, on any reference ellipsoid.

This procedure (or any other solution of the direct
geodetic problem) will be used in this paper in the
formal notation

@2, A2 =DGP (@1, A1, o2, S) (14)

az1=DGP (¢, A1, a2, S) (15)



The orthodrome of the length S we will divide for
n suborthodromes (Fig. 2) of any length Si such as

ZSi =S (from Equation 1)

i=1

(16)

and intermediate points are calculated in n iterations:

FORi=1ton
IF i=1 THEN
(g2, A2)ir =1, A1 17)
(02-1)i1 - 180°= a21 (from Equation 2) (18)
ENDIF
(2, A2)i =DGP ((2, A2)i1, (a21)i1- 180°, Si) (19)
(021)i = DGP ((¢2, A2)i1, (ax2-1)i-1- 180°, Si) (20)

NEXT i

Figure 2. Intermediate points on the orthodrome.

or even n-1 iterations because the last iteration is for
verification only that

(2, A2)n =DPa(¢p2, A2) (21)

In traditional navigation intermediate points are
calculated during planning the voyage to navigate
between them along a loxodrome. If we have
programmed procedure on the bridge during the
voyage then the situation can be quite different. In
this case the intermediate points are needed e. g. for
the verification of the path on the map only. During
the voyage if we enter as P1 the current position and
P2 is constantly the endpoint then the procedure gives
the course over ground for the orthodrome to the
endpoint, even if we e. g. due set and drift are out of
track, and not to an intermediate point. We can
calculate a new course for the orthodrome after each
position fixing and to navigate always along the
current orthodrome without these calculated
intermediate points.

6 MAXIMUM LATITUDE

According to Clairaut’s relation for a geodesic on a
surface of revolution

rsin a = const. =C (22)
where r = the radius of parallel.
For an ellipsoid of revolution
r=Rncos ¢ (23)
At (Pmax
sina/ =1 (24)
therefore
a, cz)s.(pmalX _ ‘C‘ (25)
and finally
. a;—C?
sino = 5 26
where Ce.g. is
C=r1(¢1) sin o2 (27)
The above equations are valid if
‘sin oc‘ =1 (28)
exists on our orthodrome i.e when
(Ces-90°)(Cge-90°) <0 (29)
or
(Cgs-270°)(Cge- 270°) <0 (30)
or else
Pua| = max (] ,)) (31)

7 COMPOSITE NAVIGATION

If for any reason max is limited to ¢imthen (Fig. 3) we
have:

1 The orthodome I (Ort I) — from ¢1, Al to ¢lim,
A20L

The loxodrome (Lx) — at ¢lim from A20I to A1OIL
The orthodome II (Ort II) — from ¢lim, A1OII to ¢2,
A2

We will
procedures:

2
3

obtain Ax2or and Awon in iterative
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Cge = IGP (@1, A1, @iim, A201= var) (32)

where Azor is adjusted by any small increments until
Cge=90°if L>00r270° if L<0

e BN
>\20I LX 7\1OII Ort I\I

%o

Ry

Figure 3. Composite navigation.

and

Cgs = IGP (¢piim, A1on=var, @2, A2) (33)
where Aion is adjusted by any small increments until
Cgs=90°if L>00r270° if L<0

This iterative process, although looks as very
complicated, is very fast and simple with using e.g.
the Solver in Microsoft Excel.

8 LOXODROMIC DISTANCE AND COURSE

The ortodromic navigation is for shorter distances
then in the loxodromic navigation therefore to
calculate this difference we will calculate, for
comparison, the loxodromic distance and course on
an ellipsoid.

Su(e,,0,)

COS 0L,

S, = (34)

where Sm(p1, ¢2) = the meridian distance between @1

and ¢ and o = the course over ground for
loxodrome.
tano,, = L (35)
A
where
A = In(tg(n/ 4+ ¢, /2))—In(tg(n/4+¢,/2))+
—esi —esi (36)
+E(ln1 es%n(p2 —lnl es%n(p1
2" l+esing, 1+esing,
In our case
Sm(s, 2) = IGP (@1, A1, @2, A1) (37)
Equation 33 is valid if ¢1# @2 or else
S, =1 (01 =¢2) L/ (38)
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9 INVERSE COMPUTATION FORM SIMPLIFIED

For shorter distances (the very long geodesic in
paragraph 3 means even 20 000 km) or lower required
accuracies we can use equations from Appendix A
reduced to f order (having the accurate solution for
reference in errors calculations). Therefore Equation A
10 becomes to

S=b,[(1+f+f2)D—(f +)md/2+

(39)
+(f+f*)(2a—mcos®)sin® /2]
and Equation A 11 becomes to
y=(f+f)Dc+L (40)
or
S=A®+Bg[c’® +(2a —mcosP)sin D] 41)
where
A =1+ %(f +£2)]b, (42)

1

B, = [5(f+f2)]bO (43)

It is evident that f + f> are from reduced higher
order elements from series

a2 s (44)
1-f
Noting that
b
Do —a, (45)
Equations 42 and 43 are thus
Ay =(a, +b,)/2 (46)
B, =(a,—b,)/2 (47)

This simplified computation form gives errors in
the range of meters (and has no errors for equatorial
orthodromes.

10 CIRCULAR FUNCTIONS

The angles a2, a21 from Equations A 12, A 13 and oux
from Equation 35 have to be calculated with the
circular function tan?(), but this function gives
solutions in the range (-90°, 90°). For full range (0°,
360°) retrieving tables of quadrants are used in
Sodano (1965).



For computer calculations a special procedure
should be used to retrieve the full range (0°, 360°)
from the signs of the numerator N and the denomi-
nator D and to detect and support a division by zero
case e.g.:

For

ANGLE = TAN™ %

IF D+0 THEN
ANGLE=ATN(N/D)
IF D<0 THEN ANGLE=ANGLE+180°: END IF
ELSE
ANGLE=(2-SGN(N))*ABS(SGN(N))*90°
END IF

IF ANGLE<0 THEN ANGLE=ANGLE+360°: END IF

11 CONCLUSIONS

The set of presented procedures are quite general and
universal. They can be used with any solutions of the
inverse (and direct) geodetic problems as well during
the voyage planning as during the voyage in real
time, for “full” orthodrome navigation.
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APPENDIX A

Inverse computation form (Sodano 1965, 1967)

Given: @1, A1, 2, A2

Required: iz, az21, S

Reference ellipsoid: ao, bo = semi-major and semi-
minor axes

Flattening
Fo1-o (A1)
4

tanf, = (1-f)tan e, (A2)
tanf3, = (1-f)tang, (A 3)
a =sinf, sinf, (A4)
b = cosp, cosp, (A5)
L=%,—%, (A 6)
cosd® =a+bcosL (A7)
c= bsin L (A 8)
sin ®
m=1-¢ (A9)
S=b,[(1+f+f*)D
3 (f +f*)md
2
N (f +£*)(2a—mcos®)sin ®
2 (A 10)
. £2m’(® +sin ® cos )
16
_ f*(2a—mcos®)’ sin®cos P
8
3 £2(1-m)(a—mcos ®)d* csc(I)]
2
2 .
Y= {(f+f2)(D—[f sin® +1°®*cscD]a
2 (A 11)
2 2
+[- 5f4q’ L Esin®eos® | pogr ot pim Yo+ L
tano, , = — cosp, siny (A 12)
sin 3, cosf, —sin 3, cosfB, cosy
tano, | = — —Cos L'31 siny
(sin, cosf3, —sin 3, cos 3, cosy) (A 13)
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