PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Surface treatment of a Ti6Al7Nb alloy by plasma electrolytic oxidation in a TCP suspension

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this work, we describe surface modifications to a Ti6Al7Nb alloy resulting from plasma electrolytic oxidation (PEO) in two different solutions: one containing 0.1 mol/dm3 Ca(H2PO2)2 and 100 g/dm3 TCP (tricalcium phosphate) and another containing 0.1 mol/dm3 Ca(H2PO2)2, 25 g/dm3 TCP and 1 g/dm3 NH4F. As a result of the PEO process, a porous oxide layer containing incorporated calcium and phosphorous compounds was formed on the Ti6Al7Nb alloy surface. The morphology and chemical composition of the Ti6Al7Nb alloy samples were investigated using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and X-ray diffraction (TL-XRD). The contact angle and roughness of the oxide layer were measured. The anodized samples exhibited a higher surface roughness than the non-modified Ti6Al7Nb alloy. Bioactivity investigations using an SBF solution confirmed the formation of apatite on the anodized surfaces. Additionally, the modified surface of the titanium alloy exhibited a higher corrosion resistance than as-ground examples due to the formation of a thin oxide layer on the surface.
Rocznik
Strony
671--681
Opis fizyczny
Bibliogr. 29 poz., rys., wykr.
Twórcy
  • Faculty of Chemistry, Silesian University of Technology, B. Krzywoustego Street 6, 44-100 Gliwice, Poland
autor
  • Institute of Materials Science, University of Silesia, 75 Pułku Piechoty Street 1 A, 41-500 Chorzów, Poland
autor
  • Faculty of Metals Engineering and Industrial Computer Science, AGH University of Science and Technology, Mickiewicza Street 30, 30-059 Krakow, Poland
autor
  • Faculty of Materials Engineering and Metallurgy, Silesian University of Technology, Krasińskiego Street 8, 40-019 Katowice, Poland
  • Faculty of Chemistry, Silesian University of Technology, B. Krzywoustego Street 6, 44-100 Gliwice, Poland
autor
  • Faculty of Chemistry, Silesian University of Technology, B. Krzywoustego Street 6, 44-100 Gliwice, Poland
Bibliografia
  • [1] H.J. Oh, J.H. Lee, Y. Jeong, Y.J. Kim, C.S. Chi, Microstructural characterization of biomedical titanium oxide film fabricated by electrochemical method, Surface and Coatings Technology 198 (1–3) (2005) 247–252.
  • [2] D. Krupa, J. Baszkiewicz, J. Zdunek, J. Smolik, Z. Słomka, J.W. Sobczak, Characterization of the surface layers formed on titanium by plasma electrolytic oxidation, Surface and Coatings Technology 205 (6) (2010) 1743–1749.
  • [3] A. Krząkała, A. Kazek-Kęsik, W. Simka, Application of plasma electrolytic oxidation to bioactive surface formation on titanium and its alloys, RSC Advances 3 (2013) 19725.
  • [4] Z. Yao, Z. Jiang, X. Wu, X. Sun, Z. Wu, Effects of ceramic coating by micro-plasma oxidation on the corrosion resistance of Ti–6Al–4V alloy, Surface and Coatings Technology 200 (2) (2005) 2445–2450.
  • [5] S. Cheng, D. Wei, Y. Zhou, H. Guo, Characterization and properties of microarc oxidized coatings containing Si, Ca and Na on titanium, Ceramics International 37 (6) (2011) 1761–1768.
  • [6] H.T. Chena, C.J. Chung, T.C. Yang, C.H. Tang, J.L. He, Microscopic observations of osteoblast growth on micro-arc oxidized b titanium, Applied Surface Science 266 (2013) 73–80.
  • [7] M.D. Vlad, E.V. Sindilar, M.L. Mariñoso, I. Poeata, R. Torres, J. López, M. Barracó, E. Fernández, Osteogenic biphasic calcium sulphate dihydrate/iron-modified a-tricalcium phosphate bone cement for spinal applications: in vivo study, Acta Biomaterialia 6 (2) (2010) 607–616.
  • [8] J.S. Bow, S.C. Liou, S.Y. Chen, Structural characterization of room-temperature synthesized nano-sized b-tricalcium phosphate, Biomaterials 25 (16) (2004) 3155–3161.
  • [9] T. Kokubo, Apatite formation on surfaces of ceramics, metals and polymers in body environment, Acta Materialia 46 (7) (1998) 2519–2527.
  • [10] T. Goryczka, G. Dercz, L. Pająk, E. Łągiewka, Lattice and peak profile parameters in GIXD technique, Solid State Phenomena 130 (2007) 281–286.
  • [11] PN-EN ISO 4287:1999 standard: geometrical product specification (GPS) – surface texture: profile methods – terms, definitions and surface texture parameters.
  • [12] W.H. Song, Y.K. Jun, Y. Han, S.H. Hong, Biomimetic apatite coatings on micro-arc oxidized titania, Biomaterials 25 (17) (2004) 3341–3349.
  • [13] S. Yu, Z. Yu, G. Wang, J. Han, X. Ma, M.S. Dargusch, Biocompatibility and osteoconduction of active porous calcium–phosphate films on a novel Ti–3Zr–2Sn–3Mo–25Nb biomedical alloy, Colloids and Surfaces B: Biointerfaces 85 (2011) 103–115.
  • [14] M. Shokouhfar, C. Dehghanian, M. Montazeri, A. Baradaran, Preparation of ceramic coating on Ti substrate by plasma electrolytic oxidation in different electrolytes and evaluation of its corrosion resistance: Part II, Applied Surface Science 258 (7) (2012) 2416–2423.
  • [15] H. Cimenoglu, M. Gunyuz, G.T. Kose, M. Baydogan, F. Uğurlu, C. Sener, Micro-arc oxidation of Ti6Al4V and Ti6Al7Nb alloys for biomedical applications, Journal of the European Ceramic Society 29 (3) (2009) 2527–2535.
  • [16] K. Das, S. Bose, A. Bandyopadhyay, Surface modification and cell-material interactions with anodized Ti, Acta Biomaterialia 3 (4) (2007) 573–585.
  • [17] F.A. Akin, H. Zreiqat, S. Jordan, M.B. Wijesundara, L. Hanley, Preparation and analysis of macroporous TiO2 films on Ti surfaces for bone-tissue implants, Journal of Biomedical Materials Research Part A 57 (4) (2001) 588–596.
  • [18] K. Hatano, H. Inoue, T. Kojo, T. Matsunaga, T. Tsujisawa, C. Uchiyama, Y. Uchida, Effect of surface roughness on proliferation and alkaline phosphatase expression of rat calvarial cell cultured on polystyrene, Bone 25 (4) (1999) 439–445.
  • [19] C.Y. Hsieh, S.P. Tsai, D.M. Wang, Y.N. Chang, H.J. Hsieh, Preparation of g-PGA/chitosan composite tissue engineering matrices, Biomaterials 26 (28) (2005) 5617–5623.
  • [20] H. Hu, W. Zhang, Y. Qiao, X. Jiang, X. Liua, C. Ding, Antibacterial activity and increased bone marrow stem cell functions of Zn-incorporated TiO2 coatings on titanium, Acta Biomaterialia 8 (2) (2012) 904–915.
  • [21] J.I. Rosales-Leal, M.A. Rodríguez-Valverde, G. Mazzaglia, P.J. Ramón-Torregrosa, L. Díaz-Rodríguez, O. García-Martínez, M. Vallecillo-Capilla, C. Ruiz, M.A. Cabrerizo-Vílchez, Effect of roughness, wettability and morphology of engineered titanium surfaces on osteoblast-like cell adhesion, Colloids and Surfaces A: Physicochemical and Engineering Aspects 365 (1–3) (2010) 222–229.
  • [22] R.V. Bathomarco, G. Solorzano, C.N. Elias, R. Prioli, Atomic force microscopy analysis of different surface treatments of Ti dental implant surfaces, Applied Surface Science 233 (1–4) (2004) 29–34.
  • [23] Y. Han, S.H. Hong, K. Xu, Structure and in vivo bioactivity of titania-based films by micro-arc oxidation, Surface and Coatings Technology 168 (2–3) (2003) 249–258.
  • [24] W. Zhang, K. Dub, C. Yan, F. Wang, Preparation and characterization of a novel Si-incorporated ceramic film on pure titanium by plasma electrolytic oxidation, Applied Surface Science 254 (16) (2008) 5216–5223.
  • [25] S.V. Dorozhkin, M. Epple, Biological and medical significance of calcium phosphates, Angewandte Chemie International Edition 41 (17) (2002) 3130–3146.
  • [26] S. Durdu, Ö.F. Deniz, I. Kutbay, M. Usta, Characterization and formation of hydroxyapatite on Ti6Al4V coated by plasma electrolytic oxidation, Journal of Alloys and Compounds 551 (2013) 422–429.
  • [27] M. Shokouhfar, C. Dehghanian, A. Baradaran, Preparation of ceramic coating on Ti substrate by plasma electrolytic oxidation in different electrolytes and evaluation of its corrosion resistance, Applied Surface Science 258 (7) (2011) 2617–2624.
  • [28] C.E.B. Marino, S.R. Biaggio, R.C. Rocha-Filho, N. Bocchi, Voltammetric stability of anodic films on the Ti6Al4V alloy in chloride medium, Electrochimica Acta 51 (28) (2006) 6580–6583.
  • [29] G.E. Cavigliasso, M.J. Esplandiu, V.A. Macagno, Influence of the forming electrolyte on the electrical properties of tantalum and niobium oxide films: an EIS comparative study, Journal of Applied Electrochemistry 28 (1998) 1213–1219.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ab6f3eee-dea8-44c2-89cb-5dfd48eec391
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.